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Abstract

The centrality of an agent in a network has been shown to be crucial in
explaining different behaviors and outcomes. In this paper, we propose
an axiomatic approach to characterize a class of centrality measures for
which the centrality of an agent is recursively related to the centralities of
the agents she is connected to. This includes the Katz-Bonacich and the
eigenvector centrality. The core of our argument hinges on the power of the
consistency axiom, which relates the properties of the measure for a given
network to its properties for a reduced problem. In our case, the reduced
problem only keeps track of local and parsimonious information. Our
axiomatic characterization highlights the conceptual similarities among

this class of measures.
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1 Introduction

Centrality is a fundamental concept in network analysis. Bavelas (1948) and Leavitt
(1951) were among the first to use centrality to explain differential performance of
communication networks and network members on a host of variables including time
to problem solution, number of errors, perception of leadership, efficiency, and job

satisfaction.

Following their work, many researchers have investigated the importance of the
centrality of agents on different outcomes. Indeed, it has been shown that centrality
is important in explaining employment opportunities (Granovetter, 1974), exchange
networks (Cook et al., 1983; Marsden, 1982), peer effects in education and crime
(Calvé-Armengol et al., 2009; Haynie, 2001), power in organizations (Brass, 1984), the
adoption of innovation (Coleman et al., 1966), the creativity of workers (Perry-Smith
and Shalley, 2003), the diffusion of microfinance programs (Banerjee et al., 2013), the
flow of information (Borgatti, 2005; Stephenson and Zelen, 1989), the formation and
performance of R&D collaborating firms and inter-organizational networks (Boje and
Whetten, 1981; Powell et al., 1996; Uzzi, 1997), the success of open-source projects
(Grewal et al., 2006) as well as workers’ performance (Mehra et al., 2001).

While many measures of centrality have been proposed,* the category itself is
not well defined beyond general descriptors such as node prominence or structural
importance. There is a class of centrality measures, call prestige measures of cen-
trality, where the centralities or statuses of positions are recursively related to the
centralities or statuses of the positions to which they are connected. Being chosen
by a popular individual should add more to one’s popularity. Being nominated as
powerful by someone seen by others as powerful should contribute more to one’s per-
ceived power. Having power over someone who in turn has power over others makes
one more powerful. This is the type of centrality measure that will be the focus of

this paper.

This class of centrality measures includes the degree centrality, the Katz-Bonacich
centrality (due to Katz, 1953, and Bonacich, 1987) and the eigenvector centrality.
Take, for example, the Katz-Bonacich centrality of a particular node. It counts the
total number of walks that start from this node in the graph, weighted by a decay
factor based on path length. This means that the walks are weighted inversely by

4See Wasserman and Faust (1994) and Jackson (2008) for an introduction and survey.



their length so that long, highly indirect walks count for little, while short, direct
walks count for a great deal. Another way of interpreting this walk-based measure
is in terms of an intuitive notion that a persons centrality should be a function of
the centrality of the people he or she is associated with. In other words, rather than
measure the extent to which a given actor “knows everybody”, we should measure

the extent to which the actor “knows everybody who is anybody”.

While there is a very large literature in mathematical sociology on centrality
measures (see e.g. Borgatti and Everett, 2006; Bonacich and Loyd, 2001; Wasserman
and Faust, 1994), little is known about the foundation of this class of centrality
measures from a behavioral viewpoint.® Ballester et al. (2006) were the first to
provide a microfoundation for the Katz-Bonacich centrality. They show that, if the
utility of each agent is linear-quadratic, then, under some condition, the unique Nash
equilibrium in pure strategies of a game where n agents embedded in a network
simultaneously choose their effort level is such that the equilibrium effort is equal
to the Katz-Bonacich centrality of each agent. This result is true for any possible
connected network of n agents.® In other words, Nash is Katz-Bonacich and the

position of each agent in a network fully explains her behavior in terms of effort level.

In the present paper, we investigate further the importance of centrality measures
in economics by adopting an aziomatic approach. We derive characterization results
not only for the Katz-Bonacich centrality but also for other centrality measures that
have the properties that one’s centrality can be deduced from one’s set of neighbors
and their centralities. This class includes the degree centrality and the eigenvector

centrality.

Our characterization results are based on three key ingredients, namely the defini-

tions of an embedded network and of a reduced embedded network and the consistency
property.

An embedded network is defined as a set of nodes and links for which some of the
nodes, that we call terminal nodes, are assigned a positive real number. We further
require that the set of terminal nodes forms an independent set, i.e. that no two
terminal nodes are linked and that each terminal node is the neighbor of at least

one reqular, i.e. a non-terminal node. Conceptually, one can interpret an embedded

°For a survey of the literature on networks in economics, see Jackson (2008, 2014), Ioannides

(2012), Jackson and Zenou (2014) and Jackson et al. (2014).
6With undirected links among n agents, there are 2"(»~1/2 possible networks.



network as a set of regular nodes and their neighbors such that the centrality of some
of those neighbors, the terminal nodes, has been parameterized and no longer needs

to be determined.

A reduced embedded network is defined from an initial embedded network together
with a vector of centralities. It is a small world that consists in a subset of regular
nodes of the initial embedded network and their neighbors. The terminal nodes in
the reduced network are assigned a positive number which is either kept from the

initial network or taken from the vector of centralities.

Those two definitions are instrumental in order to characterize centrality mea-
sures when combined with the consistency property. This property requires that the
centralities in the initial network are also the centralities in the reduced networks

constructed from the initial network and its vector of centralities.

As stressed by Aumann (1987), consistency is a standard property in cooperative
game as well as noncooperative game theory. It has been used to characterize the
Nash equilibrium correspondence (Peleg and Tijs, 1996), the Nash bargaining solution
(Lensberg, 1988), the core (Peleg, 1985) and the Shapley value (Hart and Mas-Colell,
1989; Maschler and Owen, 1989) to name a few. As nicely exposed by Thomson
(2011), consistency expresses the following idea. A measure is consistent if for any
network in the domain and the “solution” it proposes for this network, the “solution”
for the reduced network obtained by envisioning the departure of a subset of regular
nodes with their component of the solution is precisely the restriction of the initial
solution to the subset of remaining regular nodes. Consistency can be seen as a
robustness principle, it requires that the measure gives coherent attributes to nodes

as the network varies.

The usefulness of the consistency property for characterization purposes depends
on how a reduced problem is defined. In our case, it is very powerful since a reduced
problem only keeps track of local and parsimonious information, namely the set of

neighbors and the centrality of those neighbors.

Contrary to the Nash equilibrium approach (Ballester et al., 2006), we believe
that our axiomatic approach allows us to understand the relationship between differ-
ent centrality measures belonging to the same class, i.e. the degree, the Katz-Bonacich
and the eigenvector centrality measure. This is important because as stated above,

different types of centralities can explain different behaviors and outcomes. For exam-



ple, the eigenvector centrality seems to be important in the diffusion of a microfinance
program in India (Banerjee et al., 2013). On the contrary, the Katz-Bonacich cen-
trality seems to be crucial in explaining educational and crime outcomes (Haynie,
2001; Calvé-Armengol et al., 2009) and, more generally, outcomes for which comple-
mentarity in efforts matter. The degree centrality is also important. For example,
Christakis and Fowler (2010) combine Facebook data with observations of a flu con-
tagion, showing that individuals with more friends were significantly more likely to

be infected at an earlier time than less connected individuals.

The axiomatic approach is a standard approach in the cooperative games and so-
cial choice literature but axiomatic characterizations of centrality measures are scarce.
Boldi and Vigna (2013) propose a set of three axioms, namely size, density and score
monotonicity axioms, and check whether they are satisfied by eleven standard central-
ity measures but do not provide characterization results. Garg (2009) characterizes
some centrality measures based on shortest paths. Kitti (2012) provides a character-

ization of eigenvector centrality without using consistency.

The closest paper to ours is the one by Palacios-Huerta and Volij (2004), who have
used an axiomatic approach, and in particular a version of the consistency property,
to measure the intellectual influence based on data on citations between scholarly
publications. They find that the properties of invariance to reference intensity, weak
homogeneity, weak consistency, and invariance to splitting of journals characterize a
unique ranking method for the journals. Interestingly, this method, which they call
the invariant method (Pinsky and Narin, 1976) is also at the core of the methodology
used by Google to rank web sites (Page et al., 1998). The main difference with our
approach is the way Palacios-Huerta and Volij (2004) define a reduced problem. In
their paper, a reduced problem is non-embedded in the sense that it only contains
nodes and links. As a consequence, they need to impose an ad hoc formula to split
withdrawn initial links among the set of remaining nodes in the reduced problem. By
contrast, the way we define an embedded and a reduced embedded network allows
us to stick to a simpler and more common notion of reduction and to keep the same

notion across characterizations.

Our focus on local centrality measures bears some resemblance with Echenique
and Fryer (2007)’s emphasis on segregation indices that relate the segregation of an
individual to the segregation of the individuals she interacts with. These authors

propose a characterization of the “spectral segregation index” based on a linearity



axiom that requires that one individual’s segregation is a linear combination of her

neighbors’ segregation.

Finally, by providing an axiomatic characerization of Katz-Bonacich centrality, our
paper complements Ballester et al. (2006) who provides its behavioral foundations;
just as, for instance, Esteban and Ray (2011) complements Esteban and Ray (1994)
for the concept of polarization. It makes Katz-Bonacich centrality one of the few

economic concepts that possess both behavioral and axiomatic foundations.

The paper is organized as follows. In the next section, we recall some standard
definitions related to networks and expose the concepts of embedded and reduced
embedded networks. In section 3, we present our four main axioms. The first three,
namely the normalization, additivity and linearity axioms, deal with behavior of the
measure on very simple networks that we call one-node embedded networks. Those
networks are star-networks and possess only one regular node. The fourth axiom is
the consistency property. In section 4, we focus on the Katz-Bonacich centrality and
prove our main characterization result (Proposition 1). In section 5, we present related
axioms and extend the characterization result to degree centrality and eigenvector

centrality. Finally, Section 6 concludes.

2 Definitions

2.1 Networks and Katz-Bonacich centrality

We consider a finite set of nodes N = {1,...,n}. A network defined on N is a pair
(K,g) where g is a network on the set of nodes K C N. We adopt the adjacency
matriz representation and denote by k£ = |K|, g is a k X k matrix with entry g,;
denoting whether node i is linked to node j. When node i is linked to node j in the
network, g;; = 1, otherwise g;; = 0. The adjacency matrix is symmetric since we

consider undirected links. Let A/ denote the finite set of networks defined on N.

The set of neighbors of a node i in network (K,g) is denoted by V;(g). If we
consider a subset of nodes A C K, the set V4(g) is the set of neighbors of the nodes
in A that are not themselves in A, i.e. Va(g) = UieaVi(g) N A.

An independent set relative to network (K, g) is a subset of nodes A C K for

which no two nodes are linked. A dominating set relative to network (K, g) is a set



of nodes A C K such that every node not in A is linked to at least one node in A.

When we consider a network (K, g), the k-square adjacency matrix g keeps track
of the direct connections in the network. As is well known, the matrix gP, the pth
power of g, with coefficient g

ij
ggﬂ > 0 measures the number of paths of length p > 1 that go from i to j. By

, keeps track of the indirect connections in (K, g):

convention, g = I, where I, is the k-square identity matrix.

Given a sufficiently small scalar @ > 0 and a network (K, g), we define the matrix
+oo
M(g,a) = [, —ag] ' = a’g”.
p=0

The parameter a is a decay factor that reduces the weight of longer paths in the

right-hand-side sum. The coefficients m;;(g,a) = ;;’8 apgg]

count the number of
paths from 7 to j where paths of length p are discounted by aP. Let also 1; be the

k-dimensional vector of ones.

Definition 1 The Katz-Bonacich centrality (Bonacich, 1987, Katz, 1953) is a
function defined on N that assigns to every network (K,g) € N a k-dimensional

vector of centralities defined as
b(g, a) = [Iy — ag] ™14, (1)

where 0 < a < L2 for the matriz M(g,a) = Iy — ag]™ to be well-defined and

nonnegative everywhere on N'."

The Katz-Bonacich centrality of node i in (K, g) is bi(g,a) = > ;cpmij(g,a). It
counts the number of paths from ¢ to itself and the number of paths from 7 to any
other node j. It is positive and takes values bigger than 1. Notice that, by a simple
manipulation of equation (1), it is possible to define the vector of Katz-Bonacich
centrality as a fixed point. For a in the relevant domain, it is the unique solution to
the equation

b(g,a) = 1; + agb(g, a). (2)

"Theorems I* and IIT* in Debreu and Herstein (1953) ensure that [I, — ag]~! exists and is

nonnegative if and only if a < % where Apax is the largest eigenvalue of g. Moreover, Apax

increases with the number of links in g and is maximal on A for the complete graph with n nodes

where it takes value n — 1.



According to this fixed-point formulation, the Katz-Bonacich centrality of node i
depends exclusively on the centrality of its neighbors in (K, g),

bi(g,a) =1+ aZgijbj(g,a) =1+4a Z bi(g,a).

jeEK jeVi(e)
2.2 Embedded networks and centrality measures

The following definitions are instrumental in the characterization of Katz-Bonacich

centrality. We still consider a finite set of nodes N.

Definition 2 An embedded network defined on N is a network in which nodes
belong to one of two sets: the set of terminal nodes T and the set of regular nodes
R, with RUT C N. The set of terminal nodes T forms an independent set and a
real number x;, € RT is assigned to each terminal node t € T. The set of reqular
nodes R forms a dominating set in RUT. An embedded network is therefore given
by (RUT,g),{xi}ier), with gy = 0 whenever t,t' € T and for allt € T, g = 1 for

at least one r € R.

t,1.1682
tl, 1.4558 °

VAN

Figure 1: An Embedded Network (({ry, 72,73, 74,75} U {t1,t2},8),{1.4558,1.1682})

° 3
s

To illustrate this definition, consider the embedded network of Figure 1 which has five
regular nodes and two terminal nodes. The terminal node ¢; is linked to three regular
nodes, 71,7y and r4 and is assigned the positive number 1.4558. The terminal node

t5 is linked to a single regular node, r; and is assigned the positive number 1.1682.

Let A denote the set of embedded networks defined on N. Of course, standard
networks (K,g) are embedded networks with 7" = () and N' C N. A one-node

8



embedded network is an embedded network that possesses exactly one regular node.
It is therefore a star-shaped network in which all nodes except the center are assigned
a real number. A one-node network is a one-node embedded network with T = (), it

is therefore an isolated node. Figure 2 illustrates those two types of networks.

3,5
[

t1,20 o ° Tl e

oly, 1

Figure 2: A One-Node Embedded Network (left) and a One-Node Network (right)

Definition 3 A centrality measure defined on N is a function that assigns to each
embedded network (RUT,g),{x:}er) in N a r-dimensional vector of positive real

numbers ¢ = (¢, ..., ¢,;) with ¢ being the centrality of reqular node k, k € R.

Observe that the centrality measure is only assigned to the regular nodes. Observe
also that this definition adapts the usual notion of centrality to embedded networks.

It is now possible to extend the definition of Katz-Bonacich centrality to any network

in N

Definition 4 A centrality measure defined on N is a Katz-Bonacich centrality

1

—, such that it assigns to

measure when there exists a positive scalar a, 0 < a <
any embedded network (RUT,g),{x:}er) in N a r-dimensional vector of positive

real numbers b that satisfy, for all v € R,

bi=1+a Z T +a Z b;.

teVi(g)NT jevVi(@nRk

According to this definition, the centrality of a node i is an affine combination of
the real numbers assigned to its neighbors, either by the centrality measure itself or
by the definition of the embedded network. When restricted to the domain N, this



definition coincides with the standard definition of Katz-Bonacich centrality as given

in Section 2.1.

Definition 5 Given any embedded network ((RUT,g),{z:}er) and any vector of
real numbers (y1,...,y.), 7 = |R|, a reduced embedded network is an embedded
network (R UT',g'),{xi}er) where R C R, T" = Vr(g), gi; = gij when i €
R orje R and g;; = 0 when i,j € T', and x; = v, when t € T and x; = y; when
teR.

A reduced embedded network is constructed from an initial embedded network and
a vector of real numbers. It keeps a subset of regular nodes in the initial embedded
network together with their links. The new terminal nodes are the neighbors of
this subset and they are assigned the real number they were assigned in the initial

embedded network either via the vector x or the vector y.

t3,1.3138
[
r t,1.1682
tl, 1.4558 [ °
° o7'3
ts,1.5619

Figure 3: A Reduced Embedded Network obtained from Figure 1

To illustrate this definition, the reduced embedded network represented in Figure
3 is obtained from the network represented in Figure 1 together with the vector
y = (1.6824,1.3138,1.3244,1.5619, 1.1562) of positive numbers assigned respectively
to (ry,72,73,74,75). In this reduced network, R' = {ry,r3} and the new terminal
nodes are ty,ty, 79 = t3 and ry = t4. The real numbers assigned to terminal nodes #;
and ty come from the initial embedded network while the real numbers assigned to
terminal nodes t3 and ¢4 come from the vector (1.6824,1.3138,1.3244,1.5619, 1.1562).
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3 Axioms

We start by listing some properties for a centrality measure on one-node embedded

networks.

Axiom 1 (Normalization) A centrality measure is (1,a)-normalized if and only

of
1. for any one-node network (i), the centrality measure of node i is ¢; = ¢ = 1.

2. for any one-node embedded network (iUj, g;; = 1,x; = 1), the centrality of node
tiscg=c+a=1+a, acR".

Nodes and links are the building blocks of networks. The normalization axiom
provides information on the centrality of an isolated node and on the centrality of
a node linked to a single terminal node to which is assigned the real number 1. It
defines the centrality obtained from being alone as well as the centrality obtained

from having one link.

Axiom 2 (Additivity) Consider two one-node embedded networks ((iUT, g), {x: her)
and ((1UT',g),{xi }rer) with TNT =0 and with centrality measures ¢ and c’, the
centrality measure is additive if and only if the centrality of the one-node embedded
network ((i U(TUT'),g+¢g),{xi herur)® is equal to ¢ + ¢’ — €1, i.e. the centrality

. ;o
of node i is ¢; + ¢; — C.

This axiom says that if we start from two different one-node embedded networks
(i.e. two star-shaped networks as in Figure 2) that have the same regular node (i.e.
central node), then it suffices to add the contributions to the centrality of the regular
node in each network to obtain the contribution to the centrality of the regular node
in the one-node embedded network that “sums up” the two networks. Observe that
the term —c in the formula above corresponds to the centrality of an isolated node.
It is substracted from the sum of centralities in order not to count twice what node

7 brings in isolation.

8The notation g + g’ is used to describe the network that possesses the links of g and the links

/

of g’.
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Axiom 3 (Linearity) Consider the one-node embedded network ((1UT,g), {xt}ier)
with centrality measure c. The centrality measure is linear if and only if, for any
v > 0, the centrality measure of the one-node embedded network ((i UT,g), {yxt}eer)
is 1 +y(c — 1), i.e. the centrality of node i is ¢ + v(c; — ¢).

This axiom says that, if we multiply by a positive parameter the values given
to terminal nodes in a one-node embedded network, then the contribution to the
centrality of the regular node (the central node) that comes from those terminal
nodes is also multiplied by this positive parameter. Indeed, in the above formula, ¢;—¢
corresponds to what being linked with the terminal nodes brings to the centrality of

node i and ¢ corresponds to what node ¢ brings in isolation.

Axioms 1, 2 and 3 deal with properties of networks that possess exactly one regular

node. The next axiom is key in extending the properties to any embedded network

in V.

Axiom 4 (Consistency) A centrality measure defined on N is consistent if and
only if for any embedded network (RUT,g),{x;}er) € N with centrality measure
¢ = (¢j)jer, and for any reduced embedded network ((R'UT',g"),{x}} ier) where
R C R, T =Vgr(g), and x; = x; whent € TNT" and z; = ¢; whent € RNT’, the

centrality measure of the reduced embedded network is ¢ = (¢;)jecr-

The consistency property expresses the following idea. Suppose we start from
an initial network and a vector of centralities and want to have a closer look at the
centralities of a subset of nodes. We select this subset of nodes and compute again
the centralities of the nodes in the reduced problem built from this subset of nodes
and the initial vector of centralities. The measure is consistent if this computation

leads to the same values for centralities as in the initial network.

Let us illustrate the consistency property (Axiom 4) with the networks of Figures
1 and 3. We need to assume that a < 1/6 = 0.167. Take, for example, a = 0.1.
Consider the embedded network of Figure 1 where we assumed that z;, = 1.4558 and

xy, = 1.1682. If we calculate the Katz-Bonacich centralities of all regular nodes, we

12



easily obtain:

by, 1.6824
by, 1.3138
b, | =] 1.3244
by, 1.5619
by, 1.1562

Indeed, for node 1, we have:

b, = 14+0.1(xy +x,)+0.1(by, +bry +bry)
= 1+40.1(1.4558 + 1.1682) + 0.1 (b, + by, + by,)
= 1.2624 + 0.1 (b, + by, + by,)

Similarly, for node 2, we have:

by, = 140.1(xy +a4,)+0.1 %0,
= 1.2624 4 0.1 x b,,

In a similar way, we can calculate b,,,b,, and b,,. Then, by solving for these five
equations for the five unknowns b,,, b, b,,,b,, and b,., we obtain the values of the
Katz-Bonacich centralities shown above. Let us now calculate the Katz-Bonacich
centralities of nodes 1 and 3 in the reduced embedded network (Figure 3). Assume
y = {1.6824,1.3138,1.3244,1.5619, 1.1562}, which corresponds to the Katz-Bonacich
centrality measures of nodes 1, 2, 3, 4 and 5 in Figure 1. Let us now check the
consistency property, that is let us show that the Katz-Bonacich centralities of nodes
1 and 3 is the same in the embedded network and in the reduced embedded network.

In the latter, we have:

by, = 1401 (zy + x4, + 245 +x1,) + 0.1 X byy
= 1+0.1(1.4558 +1.1682 + 1.3138 + 1.5619) + 0.1 x b,
= 1.55+0.1 x b,

and

b, = 14+01xz, +0.1xb0,
= 1+40.1x1.5619+0.1 x b,
= 1.1562+4 0.1 x b,

By combining these two equations, it is straightforward to show that b,, = 1.6824 and

by, = 1.3244 and thus the Katz-Bonacich centralities are the same in both networks.

13



This is because, in y, we have chosen z;, = b,, = 1.3138 and z;, = b,, = 1.5619,
where b,, and b,, have been calculated in the embedded network (Figure 1). Then it
is clear that the Katz-Bonacich centralities of nodes 1 and 3 will be the same in the

reduced embedded network and in the embedded network.

4 Characterization
We have the first following result:

Lemma 1 A centrality measure defined on N satisfies Azioms 1, 2 and 3 if and
only if there exists an a € R such that for any one-node embedded network ((i U

T,g), {wther), we havec =c; = 14+ a ), .p 2.

Proof : The if part of the proof is straightforward. For the only if part, take any one-
node embedded network ((:UT,g), {x;}ier). Either T'= () and Axiom 1 ensures that
the formula applies, or it can be constructed from a set of | T'| basic one-node embedded
networks ((¢U 7, g;; = 1,1) which possess exactly one terminal node. In each of those
basic networks, the normalization axiom ensures that ¢; = 1 + a, the linearity axiom
ensures that in any one-node network (( U j,¢;; = 1),2;), ¢; = 1+ ax;. Finally,
by the additivity axiom, we know that in the initial one-node embedded network,

ci=14a) . O

Let us now state our main result:

Proposition 1 A centrality measure defined on N satisfies Awioms 1 to 4 if and only

if it is a Katz-Bonacich centrality measure.

Proof : (If part). It is straightforward to establish that a Katz-Bonacich centrality

measure according to Definition 4 satisfies Axioms 1 to 4.

(Only if part). Axiom 4 and Lemma 1 imply that there exists a positive scalar a
such that for any embedded network ((RUT,g), {x;}ier) € N, the associated vector

of centralities c satisfies, for all 1 € R,

c=1+a Z T+ a Z ¢ (3)

teVi(g)NT JjEVi(g)NR
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In order to establish that @ < —L-, consider the n-nodes complete network (N, g) € N,

n—1"

for this network equation (3) can be written

=1+ ach,for all 7,
J#i
those ¢; exist and are positive only when a < ﬁ A centrality measure that satisfies

Axioms 1 to 4 is therefore a Katz-Bonacich centrality measure. 0

As shown by Ballester et al. (2006), the Katz-Bonacich centrality is closely related
to the Nash equilibrium. Indeed, those authors show that in a game with quadratic
payoffs and strategic complementarities played by agents located at the nodes of
a network, the unique equilibrium actions are proportional to the Katz-Bonacich
centralities of those nodes. In light of this important result, one can easily understand
why, in the same vein as Peleg and Tijs (1996) who showed how consistency can be
used to characterize the Nash equilibrium correspondence, it is possible to invoke

consistency to characterize the Katz-Bonacich centrality measures.

In that case, characterization is further simplified because existence and unique-

ness of the vector of centralities are guaranteed.

5 Extensions

In this section, we deal with two centrality measures that belong to the same class as

the Katz-Bonacich centrality, i.e. the degree centrality and the eigenvector centrality.

5.1 Degree centrality

The degree centrality is one of the simplest centrality measures on networks. It assigns
to each node a positive integer which corresponds to the number of neighbors this node
possesses in the network. Formally, d;(g) = |Vi(g)|. It is well defined on N. We can
slightly adapt our axioms to provide a characterization of degree centrality. Actually,

the only changes concern the axioms that refer to one-node embedded networks.

Axiom 5 (Normalization) The centrality measure is (0,1)-normalized if and

only if
1. for any one-node network (i), the centrality measure of node i is ¢; = ¢ = 0.

15



2. for any one-node embedded network (iUj, g;; = 1,x; = 1), the centrality of node

11s¢; = 1.

It is clear that we cannot use anymore Axiom 1 since the normalization is now
different. In particular, an isolated node has a positive Katz-Bonacich centrality but

a zero degree centrality.

Axiom 6 (Invariance) Consider the one-node embedded network ((iUT, g), {x: }ier)
with centrality measure c. The centrality measure is invariant if and only if, for any
v > 0, the centrality measure of the one-node embedded network ((i UT,g), {yx:t}ier)

s ¢, i.e. the centrality of node i is ¢;.

This axiom adapts the linearity axiom (Axiom 3) to the case of degree central-
ity. Clearly, for degree centrality, it does not matter if one multiplies by a positive

parameter the positive values assigned to the terminal nodes.

Proposition 2 A centrality measure defined on N satisfies Axioms 2, 4, 5 and 6 if

and only if it is the degree centrality measure.

Proof : (If part). It is straightforward to establish that degree centrality satisfies

those four Axioms.

(Only if part). Consider a centrality measure that satisfies Axioms 2, 5 and 6.
Axiom 5 ensures that it assigns to any one-node network the real number 0 which
is also its degree centrality. For any one-node embedded network that possess one
terminal node and for which the real numbers assigned to the terminal node is equal
to 1, the same Axiom 5 ensures that the centrality of the regular node is equal to its
degree. Then, Axioms 2 and 6 ensure that the centrality of any one-node embedded
network is its degree centrality. Finally, Axiom 4 implies that for any embedded
network in AV, the centrality measure assigns to each regular node its degree centrality.
OJ

Katz-Bonacich and degree centralities are conceptually very close. They measure
the centrality of one node by counting the paths that can be drawn from that node.
In the case of degree centrality, attention is restricted to paths of length 1. In the
case of the Katz-Bonacich centrality, all paths are considered. It is therefore not a

surprise that their characterizations differ only marginally.
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5.2 Eigenvector centrality

As highlighted in the introduction, the eigenvector centrality is a very important
factor in explaining different outcomes. For example, the recent paper by Banerjee et
al. (2013) shows that targeting individuals with the highest eigenvector centralities
in a network of relationships would increase the adoption of a microfinance program
by a substantial fraction of this population. Also, if we consider a network where
journals are represented by nodes and references by links between those journals,
then the eigenvector centrality seems to be a good way of ranking journals. For
example, Pagerank (Brin and Page, 1998), which is closely related to eigenvector
centrality, is the founding algorithm used by Google to sort its search results. Also,
the measure eigenfactor (Bergstrom, 2007) uses Pagerank in order to assign different
weights to each journal, and then it counts citations of each journal weighting them

by the Pagerank of the source.

More precisely, eigenvector centrality is a measure that builds upon properties of
nonnegative square matrices. To each node ¢ in a network (K, g), the eigenvector
centrality assigns a positive real number ¢; that is proportional to the sum of the

centralities of its neighbors so that there exists a positive A satisfying, for all « € K,

e = Z Cj-

jEVi(g)

Written in matrix form and denoting c the k-dimensional vector of centralities, we
have:
Ac = gc. (4)

This formula highlights the fact that A is an eigenvalue of g, that c is a corresponding
eigenvector and therefore that the ¢; are defined up to a multiplicative constant. The
Perron-Frobenius theorem ensures that all the ¢; can be chosen positive when A > 0 is
the largest eigenvalue of g. Moreover, if (K, g) is a connected network, i.e. a network
such that all pairs of nodes are path-connected, then requiring that all the ¢; are

positive implies that X is necessarily the largest eigenvalue of g.

In order to provide an axiomatic characterization of the eigenvector centrality
along the same lines as we did for the Katz-Bonacich and the degree centrality, we need
to adapt some of our definitions, in particular, because of the potential multiplicity of
acceptable eigenvalues and eigenvectors, we now deal with correspondences and not

with functions.
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Definition 6 A centrality correspondence defined on N is a correspondence ¢
that assigns to each embedded network (RUT,g), {xi}er) in N a set of (r + 1)-
dimensional vectors of positive real numbers (A, c) = (X, ¢y, ...,¢.) with ¢ being the

centrality of reqular node k, k € R.

Definition 7 The eigenvector centrality correspondence ¢¢ defined on N as-
signs to any embedded network (RUT, g), {z: }ier) in N the set of (r+1)-dimensional

vectors of positive real numbers (A, c) that satisfy for alli € R

Ac; = Z ¢+ Z Ty

JjEVi(g)NR teVi(g)nT

Axiom 7 (Normalization) The centrality correspondence ¢ is normalized if and
only if

1. for any one-node network (i), ¢(i) = {(\,¢) : c € R, X\ € RT \e =0},

2. for any one-node embedded network (iU j,g;; = 1,2, =1), (iU j,9;5 = 1, 2; =

1)={(A\¢):c>0and A c=1}.

Axiom 8 (Additivity) Consider two one-node embedded networks ((iUT, g), {x+ her)
and ((1UT", "), {x hrer) with TOT' = 0, the centrality correspondence ¢ is additive
if and only iof

d((U(TUT), g+¢g), {xiteror)) = {(\, ¢) : F¢i, ¢ such that ¢ = ¢; + ¢,
(A ci) € o(((i VT, g), {wi}ier)) and (A, ¢;) € o(((1 U T, &), {xi}er))}-

Axiom 9 (Linearity) Consider the one-node embedded network ((iUT,g), {x:}ter).

The centrality correspondence s linear if and only if, for any v > 0,

o(((EU T, g), {vwi}ier)) = {(Xc) : (A, §> € o((((UT, ), {wi}ier))}-

Axiom 10 (Consistency) A centrality correspondence defined on N is consistent
if and only if for any embedded network (RUT, g), {z: }ier) € N, any vector (\,c) €
O((RUT,g),{xiter)), and any reduced embedded network (R UT' g"),{x}} ier)
where R C R, T" = Vg/(g), and z; = x; whent € TNT" and z}, = ¢, whent € RNT’,
we have (A, (¢;)ier) € O((R'UT', &), {x} ier)).
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Because we are now dealing with correspondences and the consistency property is
written in terms of set inclusions, those four axioms no longer characterize a unique
centrality and we need to invoke an additional property. Consider the correspondence
¢ where, for any embedded network ((R U T,g), {z:}ier), d((RUT,g),{xi ter))
is defined as the set of (A, c) such that for any reduced embeded network ((R' U
T',g"), {x} }1er) constructed from ((RUT, g), {x:}ier) and that vector (A, c), we have

(A (ci)ier) € S((R'UT', &), {zi hrer))-

Axiom 11 (Converse consistency) A centrality correspondence defined on N is

converse consistent if and only if for any embedded network (RUT,g), {x: er) €

N,
S(RUT,g). {x:}er)) 2 d((RUT.g), {wihier))-

The term converse consistency is easily understood when one realizes that consistency
is equivalent to ¢(((RU T, g), {zi}ier)) € S((RUT, g), {z:}ier)).

Proposition 3 A centrality correspondence defined on N satisfies Azioms 7, 8, 9,

10 and 11 if and only if it is the eigenvector centrality correspondence.

Proof: (If part). Verifying that the eigenvector centrality correspondence ¢ sat-
isfies Axioms 7, 8, 9 is straightforward. Then consider the correpondence e By
construction, it assigns to any embedded network ((R U T,g),{x:}ier) the set of

(r 4+ 1)-dimensional vectors of positive real numbers (A, c) that satisfy for all i € R

A¢; = Z cj+ Z T.

Jj€Vi(g)NR teVi(g)NT

In other words, ¢¢ = ¢¢ and the eigenvector centrality correspondence satisfies
Axioms 10 and 11.

(Only if part). The proof is by induction on the number of regular nodes.

Initializing: Consider a centrality correspondence ¢ that satisfies Axioms 7, 8, 9.
For any one-node network (i), ¢(i) = {(A\,¢) : A € R, ¢ € Rt A\¢ = 0} by Axiom 7.
For any one-node embedded network ((i U j, g;; = 1), x;), Axioms 7 and 9 imply that

A(((iUf, 95 =1),2;)) ={(\,;) : X €RY, ¢ e R", \¢; =z}
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Then, Axiom 8 implies that for any one-node embedded network ((:UT, g), {z¢ }ier),

S(((1UT.g) {wdier)) = {(\ci) : AERT, c €RT, Aey =) i}

teT

Therefore, ¢(((1UT', ) {xi}er)) = ¢°(((1U T, ), {1 }ier)), and ¢ coincides with

the eigenvector centrality correspondence on the set of one-node embedded networks.

Induction hypothesis: A centrality correspondence ¢ that satisfies Axioms 7, 8, 9,
10 and 11 coincides with the eigenvector centrality correspondence for any embedded

network that possesses at most » — 1 regular nodes.

Induction step: Consider an embedded network ((RUT, g), {x: }ter) that possesses
r regular nodes and a centrality correspondence ¢ that satisfies Axioms 7, 8, 9, 10
and 11. Axiom 10 together with the induction hypothesis imply that for any vector
(A, c) € o((RUT,g),{xi}ier)), and any node i € R,

Ae; = Z cj + Z Ty,

JEVi(g)NR teVi(g)nT

i.e. imply that ¢((RUT,g), {zi}ier)) € ¢((RUT,8), {xi}ier)).

The induction hypothesis implies that, for any embedded network ((RUT, g), {xt }ter),

O(((RUT,g),{xi}er)) is defined as the set of (A, c) such that, for any reduced em-
beded network ((R'UT",g’), {z}}ter) constructed from ((RUT,g), {xter), we have

(A (ei)ier) € O°((R'UT', &), {xt }rer)).

This implies that ¢(((RUT, g), {z: er)) 2 ¢°((RUT, ), {z:}ser)). Then Axiom
11 implies that ¢((RUT,g), {z:}ier)) 2 ¢ (RUT,8),{xi }er)).

Therefore we conclude that ¢ coincides with ¢¢ on the set of embedded networks

with at most r regular nodes. 0

Despite the fact that the spectral properties of a network may not be invari-
ant under the reduction operation, we thus show that it is possible to characterize

eigenvector centrality with a small set of simple axioms that includes the consistency

property.
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6 Conclusion

In this paper, we propose an axiomatic approach to derive a class of centrality mea-
sures for which the centrality of an agent is recursively related to the centralities
of agents she is connected to. This includes the Katz-Bonacich, the degree and the
eigenvector centrality. The core of our argument is based on the consistency axiom,
which relates the properties of the measure for a given network to its properties for
a reduced problem. In our case, the reduced problem only keeps tract of local and
parsimonious information. This is possible because all the centralities study here
are local in the sense that the centrality measure of an agent only depends on the

centrality measure of her neighbors.

We believe that our methodology could be extended to other centrality measures
such as the closeness centrality. This measure (and many others) is based on shortest
paths and it is possible to compute the shortest paths from any node in a network from
the shortest paths of all her neighbors. However, this means that, in order to derive
the axioms for the closeness centrality, we would need much more information than
only the centrality of the neighbors. We would need to know all the shortest paths
stemming from the neighbors. The definition of embedded and reduced embedded
networks would need to be adapted accordingly. This is clearly an interesting project

that we leave for future research.
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