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Abstract

The centrality of an agent in a network has been shown to be crucial in

explaining different behaviors and outcomes. In this paper, we propose

an axiomatic approach to characterize centrality measures for which the

centrality of an agent is recursively related to the centralities of the agents

she is connected to. This includes the Katz-Bonacich and the eigenvector

centrality. The core of our argument hinges on the power of the con-

sistency axiom, which relates the properties of the measure for a given

network to its properties for a reduced problem. In our case, the reduced

problem only keeps track of local and parsimonious information. Our

axiomatic characterization highlights the conceptual similarities among

those measures.
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1 Introduction

Centrality is a fundamental concept in network analysis. Bavelas (1948) and Leavitt

(1951) were among the first to use centrality to explain differential performance of

communication networks and network members on a host of variables including time

to problem solution, number of errors, perception of leadership, efficiency, and job

satisfaction.

Following their work, many researchers have investigated the importance of the

centrality of agents on different outcomes. Indeed, it has been shown that centrality

is important in explaining employment opportunities (Granovetter, 1974), exchange

networks (Cook et al., 1983; Marsden, 1982), peer effects in education and crime

(Calvó-Armengol et al., 2009; Haynie, 2001), power in organizations (Brass, 1984), the

adoption of innovation (Coleman et al., 1966), the creativity of workers (Perry-Smith

and Shalley, 2003), the diffusion of microfinance programs (Banerjee et al., 2013), the

flow of information (Borgatti, 2005; Stephenson and Zelen, 1989), the formation and

performance of R&D collaborating firms and inter-organizational networks (Boje and

Whetten, 1981; Powell et al., 1996; Uzzi, 1997), the success of open-source projects

(Grewal et al., 2006) as well as workers’ performance (Mehra et al., 2001).

While many measures of centrality have been proposed,4 the category itself is

not well defined beyond general descriptors such as node prominence or structural

importance. There is a class of centrality measures, call prestige measures of cen-

trality, where the centralities or statuses of positions are recursively related to the

centralities or statuses of the positions to which they are connected. Being chosen

by a popular individual should add more to one’s popularity. Being nominated as

powerful by someone seen by others as powerful should contribute more to one’s per-

ceived power. Having power over someone who in turn has power over others makes

one more powerful. This is the type of centrality measure that will be the focus of

this paper.

It includes the degree centrality, the Katz-Bonacich centrality (due to Katz, 1953,

and Bonacich, 1987) and the eigenvector centrality. Take, for example, the Katz-

Bonacich centrality of a particular node. It counts the total number of walks that

start from this node in the graph, weighted by a decay factor based on path length.

This means that the walks are weighted inversely by their length so that long, highly

4See Wasserman and Faust (1994) and Jackson (2008) for an introduction and survey.
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indirect walks count for little, while short, direct walks count for a great deal. Another

way of interpreting this walk-based measure is in terms of an intuitive notion that

a persons centrality should be a function of the centrality of the people he or she is

associated with. In other words, rather than measure the extent to which a given

actor “knows everybody”, we should measure the extent to which the actor “knows

everybody who is anybody”.

While there is a very large literature in mathematical sociology on centrality mea-

sures (see e.g. Borgatti and Everett, 2006; Bonacich and Loyd, 2001; Wasserman

and Faust, 1994), little is known about the foundation of centrality measures from a

behavioral viewpoint.5 Ballester et al. (2006) were the first to provide a microfoun-

dation for the Katz-Bonacich centrality. They show that, if the utility of each agent

is linear-quadratic, then, under some condition, the unique Nash equilibrium in pure

strategies of a game where n agents embedded in a network simultaneously choose

their effort level is such that the equilibrium effort is equal to the Katz-Bonacich

centrality of each agent. This result is true for any possible connected network of n

agents.6 In other words, Nash is Katz-Bonacich and the position of each agent in a

network fully explains her behavior in terms of effort level.

In the present paper, we investigate further the importance of centrality measures

in economics by adopting an axiomatic approach. We derive characterization results

not only for the Katz-Bonacich centrality but also for two other centrality measures,

namely the degree centrality and the eigenvector centrality, that have the properties

that one’s centrality can be deduced from one’s set of neighbors and their centralities.

Our characterization results are based on three key ingredients, namely the defini-

tions of an embedded network and of a reduced embedded network and the consistency

property.

An embedded network is defined as a set of nodes and links for which some of the

nodes, that we call terminal nodes, are assigned a positive real number. We further

require that the set of terminal nodes forms an independent set, i.e. that no two

terminal nodes are linked and that each terminal node is the neighbor of at least

one regular, i.e. a non-terminal node. Conceptually, one can interpret an embedded

network as a set of regular nodes and their neighbors such that the centrality of some

5For a survey of the literature on networks in economics, see Jackson (2008, 2014), Ioannides

(2012), Jackson and Zenou (2014) and Jackson et al. (2014).
6With undirected links among n agents, there are 2n(n−1)/2 possible networks.
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of those neighbors, the terminal nodes, has been parameterized and no longer needs

to be determined.

A reduced embedded network is defined from an initial embedded network together

with a vector of centralities. It is a small world that consists in a subset of regular

nodes of the initial embedded network and their neighbors. The terminal nodes in

the reduced network are assigned a positive number which is either kept from the

initial network or taken from the vector of centralities.

Those two definitions are instrumental in order to characterize centrality mea-

sures when combined with the consistency property. This property requires that the

centralities in the initial network are also the centralities in the reduced networks

constructed from the initial network and its vector of centralities.

As stressed by Aumann (1987), consistency is a standard property in cooperative

game as well as noncooperative game theory. It has been used to characterize the

Nash equilibrium correspondence (Peleg and Tijs, 1996), the Nash bargaining solution

(Lensberg, 1988), the core (Peleg, 1985) and the Shapley value (Hart and Mas-Colell,

1989; Maschler and Owen, 1989) to name a few. As nicely exposed by Thomson

(2011), consistency expresses the following idea. A measure is consistent if for any

network in the domain and the “solution” it proposes for this network, the “solution”

for the reduced network obtained by envisioning the departure of a subset of regular

nodes with their component of the solution is precisely the restriction of the initial

solution to the subset of remaining regular nodes. Consistency can be seen as a

robustness principle, it requires that the measure gives coherent attributes to nodes

as the network varies.

The usefulness of the consistency property for characterization purposes depends

on how a reduced problem is defined. In our case, it is very powerful since a reduced

problem only keeps track of local and parsimonious information, namely the set of

neighbors and the centrality of those neighbors.

Contrary to the Nash equilibrium approach (Ballester et al., 2006), we believe that

our axiomatic approach allows us to understand the relationship between different

centrality measures, i.e. the degree, the Katz-Bonacich and the eigenvector centrality

measure. This is important because as stated above, different types of centralities

can explain different behaviors and outcomes. For example, the eigenvector centrality

seems to be important in the diffusion of a microfinance program in India (Banerjee
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et al., 2013). On the contrary, the Katz-Bonacich centrality seems to be crucial in

explaining educational and crime outcomes (Haynie, 2001; Calvó-Armengol et al.,

2009) and, more generally, outcomes for which complementarity in efforts matter.

The degree centrality is also important. For example, Christakis and Fowler (2010)

combine Facebook data with observations of a flu contagion, showing that individuals

with more friends were significantly more likely to be infected at an earlier time than

less connected individuals.

The axiomatic approach is a standard approach in the cooperative games and so-

cial choice literature but axiomatic characterizations of centrality measures are scarce.

Boldi and Vigna (2013) propose a set of three axioms, namely size, density and score

monotonicity axioms, and check whether they are satisfied by eleven standard central-

ity measures but do not provide characterization results. Garg (2009) characterizes

some centrality measures based on shortest paths. Kitti (2012) provides a character-

ization of eigenvector centrality without using consistency.

The closest paper to ours is the one by Palacios-Huerta and Volij (2004), who have

used an axiomatic approach, and in particular a version of the consistency property,

to measure the intellectual influence based on data on citations between scholarly

publications. They find that the properties of invariance to reference intensity, weak

homogeneity, weak consistency, and invariance to splitting of journals characterize a

unique ranking method for the journals. Interestingly, this method, which they call

the invariant method (Pinsky and Narin, 1976) is also at the core of the methodology

used by Google to rank web sites (Page et al., 1998). The main difference with our

approach is the way Palacios-Huerta and Volij (2004) define a reduced problem. In

their paper, a reduced problem is non-embedded in the sense that it only contains

nodes and links. As a consequence, they need to impose an ad hoc formula to split

withdrawn initial links among the set of remaining nodes in the reduced problem. By

contrast, the way we define an embedded and a reduced embedded network allows

us to stick to a simpler and more common notion of reduction and to keep the same

notion across characterizations.

Our focus on local centrality measures bears some resemblance with Echenique

and Fryer (2007)’s emphasis on segregation indices that relate the segregation of an

individual to the segregation of the individuals she interacts with. These authors

propose a characterization of the “spectral segregation index” based on a linearity

axiom that requires that one individual’s segregation is a linear combination of her
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neighbors’ segregation.

Finally, by providing an axiomatic characterization of Katz-Bonacich centrality,

our paper complements Ballester et al. (2006) who provides its behavioral foun-

dations. It makes Katz-Bonacich centrality one of the few economic concepts that

possess both behavioral and axiomatic foundations.

The paper is organized as follows. In the next section, we recall some standard

definitions related to networks and expose the concepts of embedded and reduced

embedded networks. In section 3, we present our four main axioms. The first three,

namely the normalization, additivity and linearity axioms, deal with behavior of the

measure on very simple networks that we call one-node embedded networks. Those

networks are star-networks and possess only one regular node. The fourth axiom is

the consistency property. In section 4, we focus on the Katz-Bonacich centrality and

prove our main characterization result (Proposition 1). In section 5, we present related

axioms and extend the characterization result to degree centrality and eigenvector

centrality. Finally, Section 6 concludes.

2 Definitions

2.1 Networks and Katz-Bonacich centrality

We consider a finite set of nodes N = {1, ..., n}. A network defined on N is a pair

(K,g) where g is a network on the set of nodes K ⊆ N . We adopt the adjacency

matrix representation and denote by k = |K|, g is a k × k matrix with entry gij

denoting whether node i is linked to node j. When node i is linked to node j in the

network, gij = 1, otherwise gij = 0. The adjacency matrix is symmetric since we

consider undirected links. Let N denote the finite set of networks defined on N .

The set of neighbors of a node i in network (K,g) is denoted by Vi(g). If we

consider a subset of nodes A ⊆ K, the set VA(g) is the set of neighbors of the nodes

in A that are not themselves in A, i.e. VA(g) = ∪i∈AVi(g) ∩ ¬A.

An independent set relative to network (K,g) is a subset of nodes A ⊆ K for

which no two nodes are linked. A dominating set relative to network (K,g) is a set

of nodes A ⊆ K such that every node not in A is linked to at least one node in A.

When we consider a network (K,g), the k-square adjacency matrix g keeps track
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of the direct connections in the network. As is well known, the matrix gp, the pth

power of g, with coefficient g
[p]
ij , keeps track of the indirect connections in (K,g):

g
[p]
ij ≥ 0 measures the number of paths of length p ≥ 1 that go from i to j. By

convention, g0 = Ik, where Ik is the k-square identity matrix.

Given a sufficiently small scalar a ≥ 0 and a network (K,g), we define the matrix

M(g, a) ≡ [Ik − ag]−1 =
+∞∑
p=0

apgp.

The parameter a is a decay factor that reduces the weight of longer paths in the

right-hand-side sum. The coefficients mij(g, a) =
∑+∞

p=0 a
pg

[p]
ij count the number of

paths from i to j where paths of length p are discounted by ap. Let also 1k be the

k-dimensional vector of ones.

Definition 1 The Katz-Bonacich centrality (Bonacich, 1987, Katz, 1953) is a

function defined on N that assigns to every network (K,g) ∈ N a k-dimensional

vector of centralities defined as

b(g, a) ≡M(g, a)1k, (1)

where 0 ≤ a < 1
n−1 for the matrix M(g, a) ≡ [Ik − ag]−1 to be well-defined and

nonnegative everywhere on N .7

The Katz-Bonacich centrality of node i in (K,g) is bi(g, a) =
∑

j∈K mij(g, a). It

counts the number of paths from i to itself and the number of paths from i to any

other node j. It is positive and takes values bigger than 1. Notice that, by a simple

manipulation of equation (1), it is possible to define the vector of Katz-Bonacich

centrality as a fixed point. For a in the relevant domain, it is the unique solution to

the equation

b(g, a) = 1k + ag b(g, a). (2)

According to this fixed-point formulation, the Katz-Bonacich centrality of node i

depends exclusively on the centrality of its neighbors in (K,g),

bi(g, a) = 1 + a
∑
j∈K

gijbj(g, a) = 1 + a
∑

j∈Vi(g)

bj(g, a).

7Theorems I∗ and III∗ in Debreu and Herstein (1953) ensure that [Ik − ag]−1 exists and is

nonnegative if and only if a < 1
λmax

where λmax is the largest eigenvalue of g. Moreover, λmax

increases with the number of links in g and is maximal on N for the complete graph with n nodes

where it takes value n− 1.
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2.2 Embedded networks and centrality measures

The following definitions are instrumental in the characterization of Katz-Bonacich

centrality. We still consider a finite set of nodes N .

Definition 2 An embedded network defined on N is a network in which nodes

belong to one of two sets: the set of terminal nodes T and the set of regular nodes

R, with R ∪ T ⊆ N . The set of terminal nodes T forms an independent set and a

real number xt ∈ R+ is assigned to each terminal node t ∈ T . The set of regular

nodes R forms a dominating set in R ∪ T . An embedded network is therefore given

by ((R ∪ T,g), {xt}t∈T ), with gtt′ = 0 whenever t, t′ ∈ T and for all t ∈ T , gtr = 1 for

at least one r ∈ R.

t1, 1.4558
r1 t2, 1.1682

r2

r3
r4r5

Figure 1: An Embedded Network (({r1, r2, r3, r4, r5} ∪ {t1, t2},g), {1.4558, 1.1682})

To illustrate this definition, consider the embedded network of Figure 1 which has five

regular nodes and two terminal nodes. The terminal node t1 is linked to three regular

nodes, r1, r2 and r4 and is assigned the positive number 1.4558. The terminal node

t2 is linked to a single regular node, r1 and is assigned the positive number 1.1682.

Let N̄ denote the set of embedded networks defined on N . Of course, standard

networks (K,g) are embedded networks with T = ∅ and N ⊂ N̄ . A one-node

embedded network is an embedded network that possesses exactly one regular node.

It is therefore a star-shaped network in which all nodes except the center are assigned

a real number. A one-node network is a one-node embedded network with T = ∅, it

is therefore an isolated node. Figure 2 illustrates those two types of networks.
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t1, 2
r1 t2, 3

t3, 5

t4, 1

r1

Figure 2: A One-Node Embedded Network (left) and a One-Node Network (right)

Definition 3 A centrality measure defined on N̄ is a function that assigns to each

embedded network ((R ∪ T,g), {xt}t∈T ) in N̄ a r-dimensional vector of positive real

numbers c = (c1, ..., cr) with ck being the centrality of regular node k, k ∈ R.

Observe that the centrality measure is only assigned to the regular nodes. Observe

also that this definition adapts the usual notion of centrality to embedded networks.

It is now possible to extend the definition of Katz-Bonacich centrality to any network

in N̄

Definition 4 A centrality measure defined on N̄ is a Katz-Bonacich centrality

measure when there exists a positive scalar a, 0 ≤ a < 1
n−1 , such that it assigns to

any embedded network ((R ∪ T,g), {xt}t∈T ) in N̄ a r-dimensional vector of positive

real numbers b that satisfy, for all i ∈ R,

bi = 1 + a
∑

t∈Vi(g)∩T

xt + a
∑

j∈Vi(g)∩R

bj.

According to this definition, the centrality of a node i is an affine combination of

the real numbers assigned to its neighbors, either by the centrality measure itself or

by the definition of the embedded network. When restricted to the domain N , this

definition coincides with the standard definition of Katz-Bonacich centrality as given

in Section 2.1.

Definition 5 Given any embedded network ((R ∪ T,g), {xt}t∈T ) and any vector of

positive real numbers (y1, ..., yr), r = |R|, a reduced embedded network is an
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embedded network ((R′ ∪ T ′,g′), {x′t}t∈T ′) where R′ ⊂ R, T ′ = VR′(g), g′ij = gij when

i ∈ R′ or j ∈ R′ and g′ij = 0 when i, j ∈ T ′, and x′t = xt when t ∈ T and x′t = yt when

t ∈ R.

A reduced embedded network is constructed from an initial embedded network and

a vector of real numbers. It keeps a subset of regular nodes in the initial embedded

network together with their links. The new terminal nodes are the neighbors of

this subset and they are assigned the real number they were assigned in the initial

embedded network either via the vector x or the vector y.

t1, 1.4558
r1 t2, 1.1682

t3, 1.3138

r3
t4, 1.5619

Figure 3: A Reduced Embedded Network obtained from Figure 1

To illustrate this definition, the reduced embedded network represented in Figure

3 is obtained from the network represented in Figure 1 together with the vector

y = (1.6824, 1.3138, 1.3244, 1.5619, 1.1562) of positive numbers assigned respectively

to (r1, r2, r3, r4, r5). In this reduced network, R′ = {r1, r3} and the new terminal

nodes are t1, t2, r2 = t3 and r4 = t4. The real numbers assigned to terminal nodes t1

and t2 come from the initial embedded network while the real numbers assigned to

terminal nodes t3 and t4 come from the vector (1.6824, 1.3138, 1.3244, 1.5619, 1.1562).

3 Axioms

We start by listing some properties for a centrality measure on one-node embedded

networks.
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Axiom 1 (Normalization) A centrality measure is (1,a)-normalized if and only

if

1. for any one-node network (i), the centrality measure of node i is ci ≡ c̄ = 1.

2. for any one-node embedded network (i∪j, gij = 1, xj = 1), the centrality of node

i is ci = c̄+ a = 1 + a, a ∈ R+.

Nodes and links are the building blocks of networks. The normalization axiom

provides information on the centrality of an isolated node and on the centrality of

a node linked to a single terminal node to which is assigned the real number 1. It

defines the centrality obtained from being alone as well as the centrality obtained

from having one link.

Axiom 2 (Additivity) Consider two one-node embedded networks ((i∪T,g), {xt}t∈T )

and ((i ∪ T ′,g′), {xt}t∈T ′) with T ∩ T ′ = ∅ and with centrality measures c and c′, the

centrality measure is additive if and only if the centrality of the one-node embedded

network ((i ∪ (T ∪ T ′),g + g′), {xt}t∈T∪T ′)8 is equal to c + c′ − c̄1, i.e. the centrality

of node i is ci + c′i − c̄.

This axiom says that if we start from two different one-node embedded networks

(i.e. two star-shaped networks as in Figure 2) that have the same regular node (i.e.

central node), then it suffices to add the contributions to the centrality of the regular

node in each network to obtain the contribution to the centrality of the regular node

in the one-node embedded network that “sums up” the two networks. Observe that

the term −c̄ in the formula above corresponds to the centrality of an isolated node.

It is substracted from the sum of centralities in order not to count twice what node

i brings in isolation.

Axiom 3 (Linearity) Consider the one-node embedded network ((i∪T,g), {xt}t∈T )

with centrality measure c. The centrality measure is linear if and only if, for any

γ > 0, the centrality measure of the one-node embedded network ((i∪ T,g), {γxt}t∈T )

is c̄1 + γ(c− c̄1), i.e. the centrality of node i is c̄+ γ(ci − c̄).

8The notation g + g′ is used to describe the network that possesses the links of g and the links

of g′.
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This axiom says that, if we multiply by a positive parameter the values given

to terminal nodes in a one-node embedded network, then the contribution to the

centrality of the regular node (the central node) that comes from those terminal

nodes is also multiplied by this positive parameter. Indeed, in the above formula, ci−c̄
corresponds to what being linked with the terminal nodes brings to the centrality of

node i and c̄ corresponds to what node i brings in isolation.

Axioms 1, 2 and 3 deal with properties of networks that possess exactly one regular

node. The next axiom is key in extending the properties to any embedded network

in N̄ .

Axiom 4 (Consistency) A centrality measure defined on N̄ is consistent if and

only if for any embedded network ((R ∪ T,g), {xt}t∈T ) ∈ N̄ with centrality measure

c = (cj)j∈R, and for any reduced embedded network ((R′ ∪ T ′,g′), {x′t}t∈T ′) where

R′ ⊂ R, T ′ = VR′(g), and x′t = xt when t ∈ T ∩ T ′ and x′t = ct when t ∈ R ∩ T ′, the

centrality measure of the reduced embedded network is c = (cj)j∈R′.

The consistency property expresses the following idea. Suppose we start from

an initial network and a vector of centralities and want to have a closer look at the

centralities of a subset of nodes. We select this subset of nodes and compute again

the centralities of the nodes in the reduced problem built from this subset of nodes

and the initial vector of centralities. The measure is consistent if this computation

leads to the same values for centralities as in the initial network.

Let us illustrate the consistency property (Axiom 4) with the networks of Figures

1 and 3. We need to assume that a < 1/6 = 0.167. Take, for example, a = 0.1.

Consider the embedded network of Figure 1 where we assumed that xt1 = 1.4558 and

xt2 = 1.1682. If we calculate the Katz-Bonacich centralities of all regular nodes, we

easily obtain: 

br1

br2

br3

br4

br5


=



1.6824

1.3138

1.3244

1.5619

1.1562
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Indeed, for node 1, we have:

br1 = 1 + 0.1 (xt1 + xt2) + 0.1 (br2 + br3 + br4)

= 1 + 0.1 (1.4558 + 1.1682) + 0.1 (br2 + br3 + br4)

= 1.2624 + 0.1 (br2 + br3 + br4)

Similarly, for node 2, we have:

br2 = 1 + 0.1 (xt1 + xt2) + 0.1× br1
= 1.2624 + 0.1× br1

In a similar way, we can calculate br3 , br4 and br5 . Then, by solving for these five

equations for the five unknowns br1 , br2 , br3 , br4 and br5 , we obtain the values of the

Katz-Bonacich centralities shown above. Let us now calculate the Katz-Bonacich

centralities of nodes 1 and 3 in the reduced embedded network (Figure 3). Assume

y = {1.6824, 1.3138, 1.3244, 1.5619, 1.1562}, which corresponds to the Katz-Bonacich

centrality measures of nodes 1, 2, 3, 4 and 5 in Figure 1. Let us now check the

consistency property, that is let us show that the Katz-Bonacich centralities of nodes

1 and 3 is the same in the embedded network and in the reduced embedded network.

In the latter, we have:

br1 = 1 + 0.1 (xt1 + xt2 + xt3 + xt4) + 0.1× br3
= 1 + 0.1 (1.4558 + 1.1682 + 1.3138 + 1.5619) + 0.1× br3
= 1.55 + 0.1× br3

and

br3 = 1 + 0.1× xt4 + 0.1× br1
= 1 + 0.1× 1.5619 + 0.1× br1
= 1.1562 + 0.1× br1

By combining these two equations, it is straightforward to show that br1 = 1.6824 and

br3 = 1.3244 and thus the Katz-Bonacich centralities are the same in both networks.

This is because, in y, we have chosen xt3 = br2 = 1.3138 and xt4 = br4 = 1.5619,

where br2 and br4 have been calculated in the embedded network (Figure 1). Then it

is clear that the Katz-Bonacich centralities of nodes 1 and 3 will be the same in the

reduced embedded network and in the embedded network.
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4 Characterization

We first exploit Axioms 1, 2 and 3 to characterize measures that are linear in one-node

embedded networks.

Lemma 1 A centrality measure defined on N̄ satisfies Axioms 1, 2 and 3 if and

only if there exists an a ∈ R+ such that for any one-node embedded network ((i ∪
T,g), {xt}t∈T ), we have c = ci = 1 + a

∑
t∈T xt.

Proof : The if part of the proof is straightforward. For the only if part, take any one-

node embedded network ((i∪T,g), {xl}l∈T ). Either T = ∅ and Axiom 1 ensures that

the formula applies, or it can be constructed from a set of |T | basic one-node embedded

networks ((i∪ j, gij = 1, 1) which possess exactly one terminal node. In each of those

basic networks, the normalization axiom ensures that ci = 1 + a, the linearity axiom

ensures that in any one-node network ((i ∪ j, gij = 1), xj), ci = 1 + axj. Finally,

by the additivity axiom, we know that in the initial one-node embedded network,

ci = 1 + a
∑

t∈T xt. �

We then use the consistency property to extend this characterization to measures

that are recursive.

Proposition 1 A centrality measure defined on N̄ satisfies Axioms 1 to 4 if and only

if it is a Katz-Bonacich centrality measure.

Proof : (If part). It is straightforward to establish that a Katz-Bonacich centrality

measure according to Definition 4 satisfies Axioms 1 to 4.

(Only if part). Axiom 4 and Lemma 1 imply that there exists a positive scalar a

such that for any embedded network ((R∪ T,g), {xt}t∈T ) ∈ N̄ , the associated vector

of centralities c satisfies, for all i ∈ R,

ci = 1 + a
∑

t∈Vi(g)∩T

xt + a
∑

j∈Vi(g)∩R

cj. (3)

In order to establish that a < 1
n−1 , consider the n-nodes complete network (N,g) ∈ N ,

for this network equation (3) can be written

ci = 1 + a
∑
j 6=i

cj, for all i,
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those ci exist and are positive only when a < 1
n−1 . A centrality measure that satisfies

Axioms 1 to 4 is therefore a Katz-Bonacich centrality measure. �

It is straightforward to verify that the four Axioms are independent, since dropping

one of them would strictly enlarge the set of admissible measures.

As shown by Ballester et al. (2006), the Katz-Bonacich centrality is closely related

to the Nash equilibrium. Indeed, those authors show that in a game with quadratic

payoffs and strategic complementarities played by agents located at the nodes of

a network, the unique equilibrium actions are proportional to the Katz-Bonacich

centralities of those nodes. This highlights the fact that Katz-Bonacich centrality is a

fixed-point ; and consistency is a natural property for solutions that are fixed-points.

In light of this, one can easily understand why, in the same vein as Peleg and Tijs

(1996) who showed how consistency can be used to characterize the Nash equilibrium

correspondence, it is possible to invoke consistency to characterize the Katz-Bonacich

centrality measures.

In our case, characterization is further simplified because existence and uniqueness

of the vector of centralities are guaranteed.

5 Extensions

In this section, we extend our characterization results to two other centrality mea-

sures, i.e. the degree centrality and the eigenvector centrality.

5.1 Degree centrality

The degree centrality is one of the simplest centrality measures on networks. It assigns

to each node a positive integer which corresponds to the number of neighbors this node

possesses in the network. Formally, di(g) = |Vi(g)|. It is well defined on N̄ . We can

slightly adapt our axioms to provide a characterization of degree centrality. Actually,

the only changes concern the axioms that refer to one-node embedded networks.

Axiom 5 (Normalization) The centrality measure is (0,1)-normalized if and

only if

1. for any one-node network (i), the centrality measure of node i is ci ≡ c̄ = 0.
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2. for any one-node embedded network (i∪j, gij = 1, xj = 1), the centrality of node

i is ci = 1.

It is clear that we cannot use anymore Axiom 1 since the normalization is now

different. In particular, an isolated node has a positive Katz-Bonacich centrality but

a zero degree centrality.

Axiom 6 (Invariance) Consider the one-node embedded network ((i∪T,g), {xt}t∈T )

with centrality measure c. The centrality measure is invariant if and only if, for any

γ > 0, the centrality measure of the one-node embedded network ((i∪ T,g), {γxt}t∈T )

is c, i.e. the centrality of node i is ci.

This axiom adapts the linearity axiom (Axiom 3) to the case of degree central-

ity. Clearly, for degree centrality, it does not matter if one multiplies by a positive

parameter the positive values assigned to the terminal nodes.

Proposition 2 A centrality measure defined on N̄ satisfies Axioms 2, 4, 5 and 6 if

and only if it is the degree centrality measure.

Proof : (If part). It is straightforward to establish that degree centrality satisfies

those four Axioms.

(Only if part). Consider a centrality measure that satisfies Axioms 2, 5 and 6.

Axiom 5 ensures that it assigns to any one-node network the real number 0 which

is also its degree centrality. For any one-node embedded network that possess one

terminal node and for which the real numbers assigned to the terminal node is equal

to 1, the same Axiom 5 ensures that the centrality of the regular node is equal to its

degree. Then, Axioms 2 and 6 ensure that the centrality of any one-node embedded

network is its degree centrality. Finally, Axiom 4 implies that for any embedded

network in N̄ , the centrality measure assigns to each regular node its degree centrality.

�

Katz-Bonacich and degree centralities are conceptually very close. They measure

the centrality of one node by counting the paths that can be drawn from that node.

In the case of degree centrality, attention is restricted to paths of length 1. In the

case of the Katz-Bonacich centrality, all paths are considered. It is therefore not a

surprise that their characterizations differ only marginally.
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5.2 Eigenvector centrality

As highlighted in the introduction, the eigenvector centrality is a very important

factor in explaining different outcomes. For example, the recent paper by Banerjee et

al. (2013) shows that targeting individuals with the highest eigenvector centralities

in a network of relationships would increase the adoption of a microfinance program

by a substantial fraction of this population. Also, if we consider a network where

journals are represented by nodes and references by links between those journals,

then the eigenvector centrality seems to be a good way of ranking journals. For

example, Pagerank (Brin and Page, 1998), which is closely related to eigenvector

centrality, is the founding algorithm used by Google to sort its search results. Also,

the measure eigenfactor (Bergstrom, 2007) uses Pagerank in order to assign different

weights to each journal, and then it counts citations of each journal weighting them

by the Pagerank of the source.

More precisely, eigenvector centrality is a measure that builds upon properties of

nonnegative square matrices. To each node i in a network (K,g), the eigenvector

centrality assigns a positive real number ci that is proportional to the sum of the

centralities of its neighbors so that there exists a positive λ satisfying, for all i ∈ K,

λci =
∑

j∈Vi(g)

cj.

Written in matrix form and denoting c the k-dimensional vector of centralities, we

have:

λc = gc. (4)

This formula highlights the fact that λ is an eigenvalue of g, that c is a corresponding

eigenvector and therefore that the ci are defined up to a multiplicative constant. The

Perron-Frobenius theorem ensures that all the ci can be chosen positive when λ ≥ 0 is

the largest eigenvalue of g. Moreover, if (K,g) is a connected network, i.e. a network

such that all pairs of nodes are path-connected, then requiring that all the ci are

positive implies that λ is necessarily the largest eigenvalue of g.

In order to provide an axiomatic characterization of the eigenvector centrality

along the same lines as we did for the Katz-Bonacich and the degree centrality, we need

to adapt some of our definitions, in particular, because of the potential multiplicity of

acceptable eigenvalues and eigenvectors, we now deal with correspondences and not

with functions.
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Definition 6 A centrality correspondence defined on N̄ is a correspondence φ

that assigns to each embedded network ((R ∪ T,g), {xt}t∈T ) in N̄ a set of (r + 1)-

dimensional vectors of positive real numbers (λ, c) = (λ, c1, ..., cr) with ck being the

centrality of regular node k, k ∈ R.

Definition 7 The eigenvector centrality correspondence φe defined on N̄ as-

signs to any embedded network ((R∪T,g), {xt}t∈T ) in N̄ the set of (r+1)-dimensional

vectors of positive real numbers (λ, c) that satisfy for all i ∈ R

λcei =
∑

j∈Vi(g)∩R

cej +
∑

t∈Vi(g)∩T

xt.

Axiom 7 (Normalization) The centrality correspondence φ is normalized if and

only if

1. for any one-node network (i), φ(i) = {(λ, c) : c ∈ R+, λ ∈ R+, λc = 0},

2. for any one-node embedded network (i∪ j, gij = 1, xj = 1), φ(i∪ j, gij = 1, xj =

1) = {(λ, c) : c ≥ 0 and λ c = 1}.

Axiom 8 (Additivity) Consider two one-node embedded networks ((i∪T,g), {xt}t∈T )

and ((i∪T ′,g′), {xt}t∈T ′) with T ∩T ′ = ∅, the centrality correspondence φ is additive

if and only if

φ(((i ∪ (T ∪ T ′),g + g′), {xt}t∈T∪T ′)) = {(λ, c) : ∃ci, c′i such that c = ci + c′i,

(λ, ci) ∈ φ(((i ∪ T,g), {xt}t∈T )) and (λ, c′i) ∈ φ(((i ∪ T ′,g′), {xt}t∈T ′))}.

Axiom 9 (Linearity) Consider the one-node embedded network ((i∪T,g), {xt}t∈T ).

The centrality correspondence is linear if and only if, for any γ > 0,

φ(((i ∪ T,g), {γxt}t∈T )) = {(λ, c) : (λ,
c

γ
) ∈ φ(((i ∪ T,g), {xt}t∈T ))}.

Axiom 10 (Consistency) A centrality correspondence defined on N̄ is consistent

if and only if for any embedded network ((R∪T,g), {xt}t∈T ) ∈ N̄ , any vector (λ, c) ∈
φ(((R ∪ T,g), {xt}t∈T )), and any reduced embedded network ((R′ ∪ T ′,g′), {x′t}t∈T ′)

where R′ ⊂ R, T ′ = VR′(g), and x′t = xt when t ∈ T ∩T ′ and x′t = ct when t ∈ R∩T ′,
we have (λ, (ci)i∈R′) ∈ φ(((R′ ∪ T ′,g′), {x′t}t∈T ′)).
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Because we are now dealing with correspondences and the consistency property is

written in terms of set inclusions, those four axioms no longer characterize a unique

centrality and we need to invoke an additional property. Consider the correspondence

φ̃ where, for any embedded network ((R ∪ T,g), {xt}t∈T ), φ̃(((R ∪ T,g), {xt}t∈T ))

is defined as the set of (λ, c) such that for any reduced embeded network ((R′ ∪
T ′,g′), {x′t}t∈T ′) constructed from ((R∪T,g), {xt}t∈T ) and that vector (λ, c), we have

(λ, (ci)i∈R′) ∈ φ(((R′ ∪ T ′,g′), {x′t}t∈T ′)).

Axiom 11 (Converse consistency) A centrality correspondence defined on N̄ is

converse consistent if and only if for any embedded network ((R∪T,g), {xt}t∈T ) ∈
N̄ ,

φ(((R ∪ T,g), {xt}t∈T )) ⊇ φ̃(((R ∪ T,g), {xt}t∈T )).

The term converse consistency is easily understood when one realizes that consistency

is equivalent to φ(((R ∪ T,g), {xt}t∈T )) ⊆ φ̃(((R ∪ T,g), {xt}t∈T )).

Proposition 3 A centrality correspondence defined on N̄ satisfies Axioms 7, 8, 9,

10 and 11 if and only if it is the eigenvector centrality correspondence.

Proof: (If part). Verifying that the eigenvector centrality correspondence φe sat-

isfies Axioms 7, 8, 9 is straightforward. Then consider the correpondence φ̃e. By

construction, it assigns to any embedded network ((R ∪ T,g), {xt}t∈T ) the set of

(r + 1)-dimensional vectors of positive real numbers (λ, c) that satisfy for all i ∈ R

λci =
∑

j∈Vi(g)∩R

cj +
∑

t∈Vi(g)∩T

xt.

In other words, φ̃e = φe and the eigenvector centrality correspondence satisfies

Axioms 10 and 11.

(Only if part). The proof is by induction on the number of regular nodes.

Initializing: Consider a centrality correspondence φ that satisfies Axioms 7, 8, 9.

For any one-node network (i), φ(i) = {(λ, c) : λ ∈ R+, c ∈ R+, λc = 0} by Axiom 7.

For any one-node embedded network ((i∪ j, gij = 1), xj), Axioms 7 and 9 imply that

φ(((i ∪ j, gij = 1), xj)) = {(λ, ci) : λ ∈ R+, ci ∈ R+, λci = xj}.
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Then, Axiom 8 implies that for any one-node embedded network ((i∪T,g), {xt}t∈T ),

φ(((i ∪ T,g), {xt}t∈T )) = {(λ, ci) : λ ∈ R+, ci ∈ R+, λci =
∑
t∈T

xt}.

Therefore, φ(((i∪ T,g), {xt}t∈T )) = φe(((i∪ T,g), {xt}t∈T )), and φ coincides with

the eigenvector centrality correspondence on the set of one-node embedded networks.

Induction hypothesis: A centrality correspondence φ that satisfies Axioms 7, 8, 9,

10 and 11 coincides with the eigenvector centrality correspondence for any embedded

network that possesses at most r − 1 regular nodes.

Induction step: Consider an embedded network ((R∪T,g), {xt}t∈T ) that possesses

r regular nodes and a centrality correspondence φ that satisfies Axioms 7, 8, 9, 10

and 11. Axiom 10 together with the induction hypothesis imply that for any vector

(λ, c) ∈ φ(((R ∪ T,g), {xt}t∈T )), and any node i ∈ R,

λci =
∑

j∈Vi(g)∩R

cj +
∑

t∈Vi(g)∩T

xt,

i.e. imply that φ(((R ∪ T,g), {xt}t∈T )) ⊆ φe(((R ∪ T,g), {xt}t∈T )).

The induction hypothesis implies that, for any embedded network ((R∪T,g), {xt}t∈T ),

φ̃(((R ∪ T,g), {xt}t∈T )) is defined as the set of (λ, c) such that, for any reduced em-

beded network ((R′∪T ′,g′), {x′t}t∈T ′) constructed from ((R∪T,g), {xt}t∈T ), we have

(λ, (ci)i∈R′) ∈ φe(((R′ ∪ T ′,g′), {x′t}t∈T ′)).

This implies that φ̃(((R∪T,g), {xt}t∈T )) ⊇ φe(((R∪T,g), {xt}t∈T )). Then Axiom

11 implies that φ(((R ∪ T,g), {xt}t∈T )) ⊇ φe(((R ∪ T,g), {xt}t∈T )).

Therefore we conclude that φ coincides with φe on the set of embedded networks

with at most r regular nodes. �

Despite the fact that the spectral properties of a network may not be invari-

ant under the reduction operation, we thus show that it is possible to characterize

eigenvector centrality with a small set of simple axioms that includes the consistency

property.
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6 Conclusion

In this paper, we propose an axiomatic characterization of three centrality measures,

the Katz-Bonacich, the degree and the eigenvector centrality. The core of our argu-

ment is based on the consistency axiom, which relates the properties of the measure

for a given network to its properties for a reduced problem. In our case, the reduced

problem only keeps track of local and parsimonious information. This is possible be-

cause all the centralities study here are such that the centrality measure of an agent

only depends on the centrality measure of her neighbors.

Using the consistency property to characterize other centrality measures is cer-

tainly possible. First, by modifying the axioms on one-node embedded networks, it

is easy to obtain centralities that are non-linearly related to that of the neighbors.

Second, by keeping track of more complete information during the reduction oper-

ation, it is possible to guarantee that many centralities are local in the sense that

centralities can be computed within the reduced problem. For instance, it is clear

that the list of shortest paths from one node can be deduced from the lists of shortest

paths stemming from her neighbors. If the reduced network keeps tracks of the lists

of shortest paths, closeness centrality could satisfy the consistency property.

Extending characterization results to nonlinear and/or more complex local mea-

sures is clearly an interesting project that we leave for future research.
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