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Abstract

We propose a novel mechanism to facilitate understanding of systemic risk in finan-

cial markets. The literature on systemic risk has focused on two mechanisms, common

shocks and domino-like sequential default. We provide a new model that draws on the

games-on-networks literature. Transmission in our model is not based on default. In-

stead, we provide a simple microfoundation of banks’profitability based on competition

incentives and the outcome of a strategic game. As competitors’ loans change, both

for closely connected ones and the whole market, banks adjust their own decisions as a

result, generating a ‘transmission’of shocks through the system. Our approach permits

us to measure both the degree that shocks are amplified by the network structure and
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the manner in which losses and gains are shared. We provide a unique equilibrium

characterization of a static model, and embed this model into a full dynamic model

of network formation with n agents. Because we have an explicit characterization of

equilibrium behavior, we have a tractable way to bring the model to the data. Indeed,

our measures of systemic risk capture the propagation of shocks in a wide variety of

contexts; that is, it can explain the pattern of behavior both in good times as well as

in crisis.

Keywords: Financial networks, interbank lending, interconnections, network cen-
trality, spatial autoregressive models.

JEL Classification: G10, C21
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1 Introduction

Since the onset of the financial crisis in August of 2007, the discourse about bank safety has

shifted strongly from the riskiness of financial institutions as individual firms to concerns

about systemic risk.1 As the crisis evolved, the debate did as well, with concerns about

systemic risk growing from too-big-to-fail (TBTF) considerations to too-interconnected-to-

fail (TITF) ones. The spectacular collapse of Lehman Brothers in September of 2008 and

the subsequent rescue of AIG brought this to the forefront of academic and policy debates.2

This paper has two goals. First, to our knowledge, this paper is unique to the finance

literature in providing a description of the propagation of financial risk that explicitly mod-

els agent incentives and behavior on a network. It is well known and accepted that banks

acts strategically given the market and regulatory incentives they face; however, the existing

network models in the literature either assume that banks do not take into account the opti-

mization problems of other banks in the system. We apply the new methods of optimization

in networks (Goyal, 2007; Jackson, 2008; Jackson and Zenou, 2012) to the interbank market

with a point-in-time model of homogeneous banks and no defaults.3 Using these methods,

we are able to precisely identify the equilibrium quantity of lending due to the network

structure.

Second, we use this new model to describe a form of systemic risk. Our measure will

highlight how the structure of a network can propagate incentives. What we mean by this is

1Indeed, even prior to the crisis there is a wide range of research on the importance of interbank markets,

including some that address the systemic risk inherent to these markets. Some examples include Freixas,

Parigi and Rochet (2000), Iori and Jafarey (2001), Boss et al (2004), Furfine (2003), Iori, Jafarey, and Padilla

(2006), Soramäki, et al (2007), Pröpper, Lelyveld and Heijmans (2008), Cocco, Gomes and Martin (2009),

Mistrulli (2010), and Craig and Von Peter (2010). Each of these discuss some network properties or discuss

the importance of these markets to systemic risk evaluation.
2A general perception and intuition has emerged that the interconnectedness of financial institutions is

potentially as crucial as their size. A small subset of recent papers that emphasize such interconnectedness

or try to explain it include Allen, Babus and Carletti (2010), Amini, Cont and Minca (2010), Cohen-Cole,

Kirilenko and Patacchini (2010), Boyson, Stahel and Stulz (2010), Adrian and Brunnermeier (2009), and

Danielsson, Shin and Zigrand (2009).
3We relax both assumptions towards the end of the paper. The homogeneous agents model does a good

job of describing patterns while conveying our methodology. It also greatly reduces mathematical complexity

and thus exposition.
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that small changes in uncertainty, risk, or behavior can propagate through a network even

without defaults. This propagation is well understood from an institutional perspective; what

remains is to link this type of phenomena explicitly to network theoretical tools so that these

phenomena can be understood structurally. This structural view is important because the

exact topology of the network can fundamentally alter incentives, prices, volatility and more.

We provide two measures of systemic risk. One, a system wide measure, λ, that describes

the total risk in the system. Two, λi, a bank-specific measure, that precisely defines the

contribution of a bank to the aggregate risk of the system. Importantly, both of these

measure emerge directly from optimization problem of banks.

We obtain the following results: (i) The proposed method succeeds at characterizing the

variation in lending in the European Interbank market, both before and after the crisis. The

dynamic model is able to explain more than 60% of the change in network structure over

time; both before and after the crisis. (ii) We find that aggregate systemic risk was relatively

constant over time. (iii) the contribution to systemic risk change significantly from 2002 to

2007, reflecting a relatively even distribution at the beginning of the period, and a highly

skewed one at just before the crisis. In 2006, a very small handful of banks were responsible

for XX% of the total risk in the system. (iv) We show that the structure of the networks

can have a large influence on the price level and volatility. In a simple example, we illustrate

that a hypothetical star-shaped network of 4 banks has double the average transaction price

and 30 times the volatility of a similarly sized, circle-shaped network.

With these results in hand, we highlight a number of features of the models and its

extensions that have implications for financial policy. Because of the tight link between net-

work structure and market prices and volatility, policymaker knowledge of financial network

structure provides a potential tool in ensuring financial stability.

The current financial networks literature is largely based on random network and pref-

erential attachment models both using models from the applied mathematics and physics

literature (Albert and Barabási, 2002; Easley and Kleinberg, 2010). The preferential attach-

ment model (Barabási and Albert, 1999) is effectively based on a random network approach

since agents forms links in a probabilistic way where more popular nodes are more likely
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to be chosen (the so-called richer-get-richer model). In this class of models belong simpli-

fied networks with simple shocks, including models of cascading default. See, for example,

Allen and Gale (2000), Herring and Wachter (2001), and Amini, Cont and Minca (2010).

One mechanism to generate systemic risk comes from Herring and Wachter (2001), in which

agents are simultaneously impacted by a shock to underlying asset prices. While not a net-

work approach per se, this paper typifies a large body of research which looks at common

bank incentives in the face of a shock. The second mechanism is the Allen and Gale (2000)

one in which the default of a given entity can lead to domino-like series of subsequent defaults

based on exposures to the defaulting entity. A newer class of model updates the networks

approach to specify that links between banks are based on preferential attachment; that is,

while links are still random, banks may be more likely to link with banks that have already

many links. For example, Allen, Babus and Carletti (2011) illustrate using this approach

how the accumulation of exposure to shocks depends on the incentives for individual banks

to diversify holdings. Figure 1 shows a illustration of these models using highly stylized

networks of 4 banks each.

[Figure 1 illustration of 4 banks]

A key emphasis in our paper is that we will extend the current literature on systemic risk

to include the strategic interactions of banks in a network. We highlight in our model how

the integration of strategic action in finance networks produces distinct results from the other

methods. Most importantly, building up from first principles, it shows how incentives and

uncertainty can propagate through financial networks, thus generating systemic risk. This

occurs even in the absence of defaults or risk. A key feature of our model is the existence

of a unique equilibrium outcome of bank lending behavior for any network pattern. This

uniqueness allows us to directly estimate from an analog to the first order condition. Indeed,

the model can capture the propagation of shocks in a wide variety of contexts; that is, it

can explain the pattern of behavior both in good times as well as in crisis. A continuation

of the examples in Figure 1 is instructive at this point.

[Insert F igure1 Here]
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Notice in Figure 1, that one can derive a market price that is a function of the network

structure itself. This provide the opportunity to understand the impact of shocks to the

system in a precise way.

We take the modeling exercise another step forward. As shocks hit a system, the existing

pattern of network links will evolve. As such, reduced form and/or static models of systemic

risk may be insuffi cient for understanding the importance of interconnectedness on financial

markets. With this in mind, we explicitly embed our static model into a complete dynamic

model of network formation. Thus, we are able to characterize not only the equilibrium

pattern of behavior at each point in time, but also how this behavior evolves over time.

As banks form and break links, the structure of the network will change, and the nature

of systemic risk with it. Our model is useful in that we can discuss how systemic events

emerge even in the absence of defaults (e.g. runs on the bank, flight to quality, etc.) As with

our static model, we provide an expansion from existing work by generalizing the network

formation game to networks of n institutions.

[Insert figure 2 showing dynamic model here]

Once we have developed the static and dynamic models and shown their ability to match

the empirics patterns in European interbank data, we provide a set of extensions. In one

case, we show that because the structure of the network impacts incentives, whether capital

requirements bind for a given bank will depend on market structure. This results follows

from our results above. Once we separate the portion of lending due to network structure,

we can show that an indentical bank can be capital constrained in one network and not

constrained in another. This finding suggests a alternate route to bank regulatory policy.

While our core model is developed with homogeneous agents and no default in order to

illustrate the ability of the techniques to match the data, we extend the model in section XX

to include ex-ante heterogeneity and a bank-specific risk premium. This allows us to derive

bank-specific loan prices. We illustrate that the model has the Nash equilibrium form as in

the homogeneous agent, zero default case, such that the rest of our results follow accordingly.

Section 2 discuss the European interbank market and highlight stylized facts about this

market that have proven diffi cult to explain. Section 3 presents the static model and section
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4 the dynamic model. Section 5 brings the model to the European interbank loan market

between 2002 and 2009. Section 6 provides an extension to our baseline model to allow

for heterogeneity in bank riskiness.We illustrate how this heterogeneity maps to prices and

price volatility. Thus, change in risk perceptions can lead to cascading changes in prices and

lending behavior. Section 7 discusses the use of financial networks in policy applications to

date and provides some insight into the use of networks going forward. We illustrate here,

again with a diagram of 4 agents, how one could use the game-theoretic approach to reach

policy objectives

2 Stylized facts and Interbank Lending

A now widely discussed feature of the banking system is the presence of an interbank lending

market. Bank balance sheets are typically composed on loans on the asset side and deposits

(plus equity) on the liability side.

[Figure 3 bank balance sheet]

Regularly, the natural businesses of banks leads to higher loans or deposits on a given

day. These imbalances can be rectified in the short term through the interbank market.

For example, a bank with $1100 in loans, $900 in deposits and $100 in equity, can use the

interbank market to borrow an additional $100 to fully fund its balance sheet. Towards

the end of day, the treasury department of bank seek to find available funds, or lend excess

deposits. When the interbank market was very liquid, some banks used the market to fund

a large portion of their balance sheet, effectively relying on the presence of the market in

each subsequent day. Instead of collecting deposits, a bank could simply issue loans and fill

the liability side of the balance sheet with interbank loans.

When the crisis arrived, a combination of credit quality fears and liquidity shortages

led to diffi culties in the interbank market. (CITE, stressed not frozen) US and European

central banks intervened at various points in time to ensure that banks would have continued

access to funding. The Federal Reserve began this effort with the TAF in December of 2007.

Eventually, the Federal Reserve created a wide variety of related programs and the European
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Central Bank moved on October 15 of 2008 to a ‘full-allotment’policy in which it provided

unlimited credit to banks in the euro area.

For our purposes, the key question is the degree to which the network features of the

interbank market are important in determining access, profitability and liquidity. It has

been widely acknowledged that the markets are not complete networks; many banks would

establish relationships with other banks either through repeated transactions or through

commitments to future lending. While banks in crisis will call around to look for addi-

tional liquidity, the established lending relationships are a primary source of funding. As an

excample, many banks during normal times would simply roll-over existing loans at expiry.

We use transaction level on interbank lending from an electronic interbank market. The

e-MID SPA (or e-MID) was the reference marketplace for liquidity trading in the Euro area

during the time period studied. It was the first electronic marketplace for interbank deposits

(loans), a market that has traditionally been conducted bilaterally. Our data includes every

interbank loan transaction conducted on the e-MID during the time period from January

2002 to December 2009. During this time period, transactions on this exchange represented

about 17 percent of the Euro area market. As such, during this time period, it served as a

good representation of general market activity. Indeed, the 2008 Euro Money Market Study

published by the ECB in February of 2009 confirmed that e-MID prices tracked the Euro

overinght index average (EONIA) closely until the crisis started in August of 2007 (Euro

Study 2009).

The e-MID market is an open access one. All banks in the European interbank market

can participate. The market opens at 8am and closes at 6pm Central European Time. Both

bids and asks can be posted on the exchange along with a price and quantity. Each trader

may decide to initiate a transaction with any of the counterparties present on the book.

Once a trader chooses ‘hits’the transaction, the two parties bilaterally negotiate the trade.

The benefit of the bilateral negotiation is that it allows each party the ability to refuse

the transaction, change the quantity and/or the price. Such bilateral negotiation allows

banks to maintain lending limits for each specific counterparty. Outside of e-MID banks

privately negotiate lines of credit (or ‘liquidity guarantees’) with each other and conduct
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regular transactions with each other based on these lines. As a result, e-MID can support

the continuation of the bilateral lending arrangements without forcing banks to accept / give

loans outside their prior guidelines.

Table 1 reports descriptive statistics for the e-MID market. We report the average daily

volume for overnight and total lending. As well, we include the proportion of lending made

by the 25 largest market participants, which averages about 20% prior to the crisis and 5-10%

after. In addition to total volumes dropping, the market shifts from being highly centralized

to considerably less so after the crisis. This finding is consistent with our estimation of the

role of centrality over time; we find below that importance of being central declines after the

crisis.

[Insert Table 1 here]

We also show in Figure 4, the daily volume of lending for overnight and long-term loans.

This shows the stylized patterns of lending in this market. Notice that lending volume of

long-term loans drops precipitously beginning with the onset of the crisis in August of 2007.

Both overnight and long-term loans decline following the beginning of the ECB full allotment

policy in October of 2008.

In Figure 5 we report the daily price volatility, as the standard deviation of prices. The

reverse pattern is observed here. After a long period with relatively low volatility dating back

to the beginning of 2002, the onset of the crisis saw price volatility increase dramatically.

Two significant increases are apparent, in August of 2007 and in October of 2008.

Each of these two figures shows the daily value as well as a two-month moving average.

[Insert F igures 4 and 5 here]

Our data includes approximately 250 institutions that participated in at least one trans-

action during the time period. Loans in the database range from overnight to two years in

length, though about 70% of the loans are for overnight alone. Our information spans 945,566

loans of all types, of which 752,901 are overnight loans. We will focus on the overnight loans

for simplicity, but will include longer loans as a robustness check in Section 6, below.
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The principal purpose of the interbank market is provide a mechanism for banks to re-

allocate deposit imbalances. For larger shocks or gross liquidity needs, most institutions

borrow directly from the ECB.

3 Static Model

3.1 Notation and model

We begin with a simple static model of a bank whose balance sheets is given in Figure 3. On

the asset side of the balance sheet, we include cash, loans and interbank loans. On the liability

side: deposits, interbank borrowing and equity. Our primary object of interest will be either

interbank loans or interbank deposits. In addition, we specify a basic leverage constraint for

each bank as: ξ ei ≥ assets (where ei is the equity of bank i and ξ is the leverage contraint).

For simplicity, we groups cash and loans into a single variable Xi (i.e. loans + Cash = Xi).

Then we can write that interbank loans at each point in time must satisfy two criterion.

One, given a value for liabilities and for Xi, qi = liabilitiesi −Xi. The equality conditions

simply means that banks must match assets and liabilities. The assumption that interbank

loans are the remaining choice on the balance sheet reflects the nature of this market. Precise

deposits balances are determined by customer preferences, loans are typically much longer

maturity and cannot be underwritten or sold on a moment’s notice with any reliability, and

equity takes weeks or months to issues. Thus, in the perspective of a day or two, the only

free variable for a bank to clear its balance sheet is the interbank market.4

Two, the leverage constraint requires that

ξ ei ≥ Xi + qi (1)

This reflects the fact that banks cannot lend more funds than some multiple of their equity.

In the time period we address, European banks were not bound explicitly by a leverage

constraint. However, Basel capital constraints formed a type of upper bound on the quantity

4We abstract for now from the ability to borrow from the central bank. This is an alternate mechanism

to match the balance sheet. However, this type of borrowing typically comes at a penalty rate. We return

to penalty rate borrowing in the policy section at end.
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of lending possible. We include this feature particularly because new Basel III explicitly

discuss additional capital requirements for Systemically Important Financial Institutions

(SIFIs). The borrowing side obviously has no such constraint.

As we develop the model, two key features will emerge: global strategic substitutability

and local strategic complementarities. These will show that, as total quantities in the market

increase, prices will fall. However, at the local level, between two agents, there will be an

incentive to increase prices when quantities increase due to the complementarity effect. The

model will find an equilibrium where these effects are balanced.

To our knowledge, the fact that we incorporate both local and global components is

unique to the financial networks literature; by incorporating both the direct network influ-

ences as well as the system-wide effects, our model is particularly suited to the description of

financial markets. These markets influenced both by prices (global) and as well by network

impacts (local).

To put into a network model, we look at a population of banks. We define for this

population a network g ∈ G as a set of ex-ante identical banks N = {1, . . . , n} and a set of
links between them. We assume at all times that there are least two banks, n ≥ 2. The set

of bank i’s direct links is: Ni(g) = {j 6= i | gij = 1}. Links in this context can be defined in
a variety of ways. In other work, they have represented the exchange of a futures contract

(Cohen-Cole, Kirilenko and Patacchini, 2010). In the banking networks that we study, the

links will represent the presence of a interbank loan.

The cardinality of this set is denoted by ni(g) = |Ni(g)|.5 The n−square adjacency
matrix G of a network g keeps track of the direct connections in this network. By definition,

banks i and j are directly connected in g if and only if gij = 1, (denoted by ij), and gij = 0

otherwise. Links are taken to be reciprocal, so that gij = gji (undirected graphs/networks).

By convention, gii = 0. Thus G is a symmetric (0, 1)−matrix. All our theoretical results
hold with directed and weighted networks.

We hypothesize that these direct links produce some type of reduction in costs of the

collaborating banks. For example, as the size of the loan increases, the cost per dollar of

5Vectors and matrices will be denoted in bold and scalars in normal text.
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loan is reduced for both parties to the loan. It is a straightforward assumption that the

operational costs of a trading floor or treasury operation decline per dollar of loan as loan

size increases.

We will model the quantity choice based on competition in quantities of lending a la

Cournot between n banks with a single homogenous product (a loan). We will then look

at quantities of borrowing on the same market. This distinction is useful for third reasons.

First, it allows us to look separately at what happens to each side of the market. As will be

apparent below, the two markets evolve differently during the 8 years we study. Second, it

allows us to use well-established competition frameworks, such as Cournot. These are based

on the idea of a group of firms competiting for customer business. Looking only at one side

of the market allows this view. Third, looking at each side of the market captures the fact

that we need gross lending amounts to understand competitive forces. If a bank borrows

$100 and lends $99, to understand the network, we need to know both quantities; a netted

$1 borrowing does not capture the complexity and scale of the interactions. Recall that we

will precisely identify who lends and borrows from which other banks.

We assume the following standard linear inverse market demand where the market price

is given by:

C (2)

where θ > 0. The marginal cost of each bank i ∈ N is: ci(g). The profit function of each

bank i in a network g is therefore given by:

πi(g) = pqi − ci(g)qi

= θqi −
∑
j∈N

qiqj − ci(g)qi

where qi is the loan quantity produced by bank i. We assume throughout that θ is large

enough so that price and quantities are always strictly positive.

Our specification of inter-related cost functions is as follows. The cost function is assumed

to be equal to:

ci(g) = c0 − φ
[

n∑
j=1

gijqj

]
(3)
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where c0 > 0 represents a bank’s marginal cost when it has no links while φ > 0 is the cost

reduction induced by each link formed by a bank. The parameter φ could be bank specific

as well so that φi, but for simplicity of notation, we do not report this case.

Equation (3) means that the marginal cost of each bank i is a decreasing function of

the quantities produced by all banks j 6= i that have a direct link with bank i. This is the

specification that drives the functional relationships between banks.

To ensure that we obtain a reasonable solution, we assume that c0 is large enough so that

ci(g) ≥ 0, ∀i ∈ N , ∀g ∈ G. The profit function of each bank i can thus be written as:

πi(g) = pqi − ci(g)qi

= θqi −
∑
j∈N

qiqj − c0qi + φ
n∑
j=1

gijqiqj

= aqi − q2i −
∑
j 6=i

qiqj + φ
n∑
j=1

gijqiqj (4)

where a ≡ θ − c0 > 0.

We highlight a few features of equation (4). First, we can see that profits are a negative

function of total loans. This we call global strategic substitutability, as the effect operates

only through the market and not through the direct links that form the network. So as qj

increases, ∂πi(g)
∂qi

is reduced as demand falls.

Second, we can see that profit is increasing in the quantity of direct links, via the cost

function impact. This we refer to as local strategic complementarities since if j is linked with

i, then if qj increases
∂πi(g)
∂qi

is increased because of the reduction in the cost. Total profits

are of course, dependent on the two jointly.

Third, we can define σij as the cross partial of profitability with respect to a bank’s

quantity change and another bank’s quantity change. We have:

σij =
∂2πi(g)

∂qi∂qj
=

{
σ = −1 + φ

∑n
j=1 gijqj if gij = 1

σ = −1 if gij = 0
(5)

so that σij ∈ {σ, σ}, for all i 6= j with σ ≤ 0.
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This last feature highlights the mechanism of the model. A shock to a connected bank

changes the incentives of a bank to lend, precisely through the function (5). Notice that

the model generates systemic risk insofar as shocks that impact a given bank, such as an

exogenous decrease in capital and ability to lend, pass through to the rest of the market

through a competition mechanism. The global effect of the reduction in lending by a single

bank is an increase by others. The local effect, however, that passes through the network

linkages, is that costs increase. As a result, loans volumes of direct network links decline as

well. Once network links change their choices, their links do so as well, and so on.

3.2 Nash equilibrium in loans

Consider a Cournot game in which banks chose a volume of interbank lending conditional

on the actions of other banks. This game requires common knowledge of the actions of other

banks. We describe below that our data will allow this assumption; all bid and asks are

posted on the system. We expand the standard game to fit the model above. Agents have

the defined profit function in (4), which implies that cost is intermediated by the network

structure.

It is easily checked that the first-order condition is:

q∗i =
1

2
a− 1

2

∑
j 6=i

qj +
1

2
φ

n∑
j=1

gijqj (6)

Formally, we show below that this game has a unique Nash equilibrium.

We use a network centrality measure due to Katz (1953), and latter extended by Bonacich

(1987), that proves useful to describe the equilibrium of our network model.

The Katz-Bonacich network centrality The Bonacich centrality will provide a mea-

sure of direct and indirect links in the network. Effectively, a relationship between two banks

is not made in isolation. If bank A lends money to bank B, and bank B already lends to

bank C, the strategic decisions of bank A will depend, in part on the strategic decisions of

B. Of course, B’s decisions will also be a function of C’s. The Bonacich measure will help

keep track of these connections and, as we will see in the subsequent section, has a natural

interpretation in the Nash solution.
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Definition 1 Consider a network g with adjacency n−square matrix G and a scalar φ such

that M(g, φ) = [I−φG]−1 is well-defined and non-negative. Let 1 be the n−dimensional
vector of ones. Then, the Katz-Bonacich centrality of parameter φ in g is defined as:

b(g, φ) =

+∞∑
k=0

φkGk1 = [I−φG]−1 1 (7)

where φ ≥ 0 is a scalar and 1 is a vector of one.

An element i of the vector b(g, φ) is denoted by bi (g, φ). For all b(g, φ)∈IRn, b (g, φ) =

b1 (g, φ) + ... + bn (g, φ) is the sum of its coordinates. We provide additional description in

the appendix. Observe that, by definition, the Katz-Bonacich centrality of a given node is

zero when the network is empty. It is also null when φ = 0, and is increasing and convex

with φ.

3.3 Equilibrium loans

We now characterize the Nash equilibrium of the game. Denote by ω (G) the largest eigen-

value of G.

Proposition 1 Consider a game where the profit function of each bank i is given by (4).

Then this game has a unique Nash equilibrium in pure strategies if and only if φω (G) < 1.

This equilibrium q∗ is interior and given by:

q∗ =
a

1 + b (g, φ)
b (g, φ) (8)

This result is a direct application of Theorem 1 in Ballester, Calvo-Armengol, and Zenou

(2006). Appendix 1 shows in more detail how the first order condition can be written as a

function of Katz-Bonacich centrality. It also provides an example.

This solution is useful for a couple of reasons: One, notice that this equation provides a

closed form solution to the game with any number of banks. No matrix math is needed to

calculate output, only the matrix of interconnections and the bank specific cost functions.

Two, this equation provides the basis for estimation of any network linked bank decision.

We explore this implication below in more detail.
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We can now calculate the equilibrium profit of each bank by replacing the equilibrium

value of q∗i into the profit function (4). It is easily verified that we obtain:

π∗i = (q∗i )
2 =

a2b2i (g, φ)

[1 + b (g, φ)]2
(9)

so that the profit function of each bank is an increasing function of the Bonacich centrality

of each bank.

A key parameter in this equilibrium result is φ, the coeffi cient in the equation (7) that

measures how much of a shock to agents is passed on to connected agents. We estimate

the coeffi cient below φ. Let us explicit the role of φ as a multiplier and, in our context,

as a systemic risk that propagates risk through incentives. Consider the same n banks but

without a network (i.e. φ = 0) so that there are no links (or loans) between them and ci = c0.

In that case, the profit of each firm is given by:

πi = θqi −
n∑
j=1

qiqj − c0qi

The Nash equilibrium is such that:

q∗i = a−
n∑
j=1

q∗j

where a ≡ θ − c0. Summing the n first-order conditions, we obtain:

qNO∗ =

(
n

1 + n

)
a (10)

where q∗ =
n∑
j=1

q∗j , so that

qNO∗i =
a

1 + n
(11)

Let us compare this result with the network case, i.e. (6). Some math, shown in appendix,

finds an additional term, which is a positive function of φ. Indeed,

qNET∗i =
a

(1 + n)︸ ︷︷ ︸
quantity produced with no network

+
φ

(1 + n)

[
n

n∑
j=1

gijq
∗
j −

n∑
k 6=i

n∑
j=1

gkjq
∗
j

]
︸ ︷︷ ︸

extra quantity due to multiplier effects
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The intuition is clear. Total output is higher with networks than without networks and

the difference is qNET∗ − qNO∗ =
(

φ
1+n

)∑n
i=1

∑n
j=1 gijq

∗
j > 0. In other words, total output

increases by this value when network effects are present. This implies that prices of loans

are much lower with networks since pNO∗ = pNET∗ +
(

φ
1+n

)∑n
i=1

∑n
j=1 gijq

∗
j , which creates

even more interactions (i.e. loans). As a result, profits are much higher with networks.

To better understand the multiplier effect due to networks, consider the case of two banks

A and B (n = 2). Assume first that there is no network (i.e. φ = 0) so that no bank gives a

loan to the other. In that case, using (11), each bank will produce

qNO∗ = qNO∗A = qNO∗B =
a

3

Consider now the simplest possible network, that is each bank gives loans to the other bank,

i.e., g12 = g21 = 1. The adjacency matrix is:

G =

(
0 1

1 0

)

There are two eigenvalues: 1,−1 and thus ω (G) = 1. Thus the condition from Proposition

1, φω (G) < 1, is now given by: φ < 1. We easily obtain:

b (g, φ) =
1

(1− φ)

(
1

1

)
and thus the unique Nash equilibrium is given by:

q∗ =
a

1 + 2
1−φ

b (g, φ) =
a

3− φ

(
1

1

)
that is

qNET∗ = qNET∗A = qNET∗B =
a

3− φ
Since φ < 1, then this solution is always positive and unique and

qNET∗ =
a

3− φ >
a

3
= qNO∗

In fact, we have:

qNET∗ = qNO∗ +
a φ

3 (3− φ)
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or equivalently

qNET∗ =
3

(3− φ)
qNO∗

In this example, the multiplier is equal to 3/ (3− φ) > 1. One can see that this multiplier

increases in φ so that the higher is φ, the higher is the quantity of loans that will be given

to each bank. This means, in particular, that if there is a shock to this economy, φ, the

systemic risk, will propagate the risk at a factor 3/ (3− φ).

3.4 Equilibrium prices

One of the powerful features of the model is that it provides a structural link between

the network pattern and the equilibrium market price for interbank loans. Changing the

network structure changes equilibrium prices. This can be observed through two features of

the model. First, the equilibrium quantity for each bank is expressed precisely in (8). As

the sum of these quantities change, the global effects will be to influence prices as in any

market. This is what we labeled global strategic substitutability, above. Two, the individual

patterns of links in the network will influence the local loan decisions. This local strategic

complementarities, also influences aggregate prices.

To be more precise, using the linear inverse market demand (2) and (8), we obtain the

following equilibrium price of loan transactions:

p∗ = θ −
∑
j∈N

q∗j = θ − b (g, φ)

1 + b (g, φ)
(12)

Example 1 Consider the two following networks:
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Circle Star

A

B C

D

D

A

B C

The network on the left panel is a circle (and its adjacency matrix is denoted by GC)

while the network on the right panel is a star (and its adjacency matrix is denoted by GS).

We have:

GC =


0 1 0 0

0 0 1 1

0 0 0 1

1 0 0 0

 and GS =


0 0 0 1

0 0 1 1

0 0 0 1

0 0 1 0


where the first row corresponds to bank A, the second row to bank B, etc. The largest

(noncomplex) eigenvalue for GC is 1 and for GS, it is also 1. As a result, the eigenvalue

condition φω (G) < 1 is φ < 1 for both networks. Observe that we have a directed network

(since loans are by definition directed) and thus the adjacencies matrices are asymmetric.

We focus on outdegrees only, i.e. links (i.e. loans) that go from one bank to the other one.

In other words, we analyze the lending market. The two networks have the same number of

banks (4) and have the same numbers of loans (5) but have a different structure.

In this framework, the Bonacich centrality is a measure of “popularity”since the most

central bank (i.e. node) is the one who gives the higher number of loans (i.e. links). Fortu-

nately, the symmetry of the adjacency matrix does not play any role in the proof of Propo-

sition 1 and thus the results are true for both directed and undirected networks. We can

see here how prices vary as a function of even relatively small changes in network structure.
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Using Proposition 1, the unique Nash equilibrium is given by:
qC∗A
qC∗B
qC∗C
qC∗D

 =
(θ − c0)

5 + 5φ+ 6φ2 + 2φ3 − φ4


1 + φ+ 2φ2 + φ3

1 + 2φ+ 2φ2 + φ3

1 + φ+ φ2

1 + φ+ φ2 + φ3


for the circle network and 

qS∗A
qS∗B
qS∗C
qS∗D

 =
(θ − c0)

5


1

1 + φ

1

1


for the star-shaped network. It is interesting to see that there is much more asymmetries

in the circle network where bank B has the highest Bonacich centralities (gives the highest

loans quantities). Bank A is the second most active bank because it gives a loan to B. Then

come bank D and then bank C. On the contrary, for the star-shaped network, banks A, C,

and D give the same loan quantities while bank B has the highest Bonacich centrality. This

is because they all lend to the same bank D.

What is interesting here is the impact of network structure on the aggregate equilibrium

price of loans. In the circle network, each loan is priced at

pC∗ =

(
1− φ3 − φ4

)
θ + (4 + 5φ+ 6φ2 + 3φ3)c0

5 + 5φ+ 6φ2 + 2φ3 − φ4

where θ is the market demand from equation (2) and φ is the coeffi cient in the equation (7).

For the star-shaped network, we obtain:

pS∗ =
(1− φ) θ + (4 + φ) c0

5

What is interesting here is that, with four banks A, B, C and D, depending on the network

structure, the price for loans can differ. Indeed, it is easily verified that pS∗ > pC∗. This

reflects the fact that the star-shaped network induces less competition and thus less loan

outputs than the star-shaped network.

3.5 Equilibrium behavior with leverage constraints

Remember that we have a leverage constraint given by (1). We need to check that the

Nash equilibrium satisfies this condition. Define qi ≡ ξ ei −XiSince ξ, ei and Xi are purely
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exogenous variables, we consider three possibilities. The first is that no agents are constrained

by the leverage constraint, i.e., the equilibrium quantity of loans q∗i , defined by (8), is such

that q∗i ≤ qi, for all i = 1, ..., n. In that case, all banks play the Nash equilibrium described

above and give a quantity of loans q∗i defined by (8). The second is that all banks are

constraints so that q∗i > qi, for all i = 1, ..., n. In that case, the equilibrium is such that all

banks gives loans equal to q∗i = qi ≡ ξ ei−Xi. Finally, there is an intermediary case for which

some banks are constrained by the leverage constraint and some are not. To characterize this

equilibrium, let us rank banks by their position in the network, i.e. their Bonacich centrality.

Then, those for which q∗i ≤ qi will give loans equal to q
∗
i defined by (8) while those for which

q∗i > qi, which have q
∗
i = qi ≡ ξ ei −Xi.

This difference between constrained and unconstrained suggests that increasing the frac-

tion of constrained banks leads to a smaller fraction of bank propagating incentives through

the network. This can have a range of potential impacts on total systemic risk and the

allocation of risk in the system. Indeed, when ξ increases, more and more banks are con-

strained in their loan possibilities and are more likely to hit the leverage constraint so that

q∗i = qi ≡ ξ ei − Xi. Interestingly, this depends on the network structure so that the same

bank with the same leverage constraint can behave differently depending on the network it

belongs to. Consider again Example 1 and assume for bank C that6

(θ − c0)
(
1 + φ+ φ2

)
5 + 5φ+ 6φ2 + 2φ3 − φ4

< qC <
(θ − c0)

5

This implies that qS∗C > qC and q
C∗
C < qC and thus, in equilibrium,

qC∗C =
(θ − c0)

(
1 + φ+ φ2

)
5 + 5φ+ 6φ2 + 2φ3 − φ4

and qS∗C = qC ≡ ξ eC −XC

In other words, the same bank C in the circle network will produce its Nash equilibrium

quantity of loans while, in the star-shaped network, will hit the leverage constraint and will

lend loans so that qS∗C = qC . This is true for a given ξ. When ξ increases then banks are more

6Observe that, since φ < 1, we have:

(θ − c0)
(
1 + φ+ φ2

)
5 + 5φ+ 6φ2 + 2φ3 − φ4

<
(θ − c0)
5
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likely to hit the leverage constraint and will not give their “optimal”(i.e. Nash equilibrium)

quantity of loans.

4 Dynamic Model

In this section, we extend the model of Section 3 to include strategic link formation amongst

banks. This step is crucial in that it permits us to include in our analysis not only the

quantity and price choices amongst banks conditional on their existing network, but also

their decisions on how to change the network structure itself. The model here will show the

equilibrium outcome network structure conditional on these strategic choices. Such a model

gives us the ability to validate that our static model results are reasonable insofar as they are

not contradicted by strategic network formation incentives. It also allows us to investigate

how strategic behavior can impact network structure and liquidity availability.

Our central modeling assumptions will be that links are formed based on the profitability

tradeoff that emerges from the game in the static model. Effectively, banks know that the

game will be played in the subsequent period and that all other banks are also making

network formation decisions. Based on these, banks can choose whether or not to form a

link; that is, to make a loan to a new customer. We will also specify an exogenous probability

of link formation, α.7

Let us describe the network formation process. We here follow König, Tessone and

Zenou (2010a). Let time be measured at countable dates t = 1, 2, ... and consider the network

formation process (G(t))∞t=0 with G(t) = (N,L(t)) comprising the set of banks N = {1, ..., n}
together with the set of links (i.e. loans) L(t) at time t. We assume that initially, at time

t = 1, the network is empty. Then every bank i ∈ N optimally chooses its quantity qi ∈ R+
as in the standard Cournot game with no network. Then, a bank i ∈ N is chosen at random

and with probability α ∈ [0, 1] forms a link (i.e. loan) with bank j that gives her the highest

payoff . We obtain the network G(1). Then every bank i ∈ N optimally chooses its quantity

7While we don’t discuss in detail, this asssumption can be relaxed in a number of ways. For example,

König, Tesson and Zenou (2010b) show that a capacity constraint, what this model would interpret as a

capital constraint, generates similar network patterns.
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qi ∈ R+, and the solution is given by (8). The profit of each bank is then given by (9) and
only depends on its Bonacich centrality, that is its position in the network. At time t = 2,

again, a bank is chosen at random and with probability α decides with whom she wants to

form a link while with probability 1−α this bank has to delete a link if she has already one.
Because of (9), the chosen bank will form a link with the bank that has the highest Bonacich

centrality in the network. And so forth.

As stated above, the randomly chosen bank does not create or delete a link randomly.

On the contrary, it calculates all the possible network configurations and chooses to form

(delete) a link with the bank that gives her the highest profit (reduces the least her profit).

It turns out that connecting to the bank with the highest Bonacich centrality (deleting the

link with the agent that has the lowest Bonacich centrality) is a best-response function for

this bank. Indeed, at each period of time the Cournot game described in Section 3 is played

and it rationalizes this behavior since the equilibrium profit is increasing in her Bonacich

centrality (see 9).

To summarize, the dynamics of network formation is as follows: At time t, a bank i is

chosen at random. With probability α bank i creates a link to the most central bank while

with complementary probability 1− α bank i removes a link to the least central bank in its
neighborhood.

Characterization of equilibrium We would like to analyze this game and, in partic-

ular, to determine, in equilibrium, how many links banks will have. More importantly, we

would like to describe the entire distribution of links for banks in the network. This degree

distribution gives the percentage of banks with number of links (degree) d = 1, ..., n. Recall

that the decision to add or delete a node is made based on bank optimization decisions that

emerge from our static model.

Our results follow the work in König, Tessone and Zenou (2010a) who show that, at

every period, the emerging network is a nested split graph or a threshold network, whose

matrix representation is stepwise. This means that agents can be rearranged by their degree

rank and, conditional on degree d 6= 0, agents with degree d are connected to all agents with

degrees larger than d. Moreover, if two agents i, j have degrees such that di < dj, this implies
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that their neighborhoods satisfy Ni ⊂ Nj. Below, we will show how closely the theoretical
patterns implied by this model are replicated in the data.

Denote by N(d, t) the number of agents with degree d ≤ K/2 at time t. It can be shown

that the dynamic evolution is given by:

N(d, t′ + 1)−N(d, t′) =

(
1− α
n

)
N(d+ 1, t′) +

α

n
N(d− 1, t′)− 1

n
N(d, t′) (13)

N(0, t′ + 1)−N(0, t) =

(
1− 2α

n

)
− α

n
N(0, t) +

(
1− α
n

)
N(1, t) (14)

These equations mean that the probability to add nodes to banks with degree d is propor-

tional to the number of nodes with degree d−1 (resp. d+1) when selected for node addition

(deletion). The dynamics of the adjacency matrix (and from this the complete structure of

the network) can be directly recovered from the solution of these equations. Following the

sketch proof in the appendix and König, Tessone and Zenou (2010a), we can state:

Proposition 2 Let 0 < α ≤ 1/2. Then the asymptotic expected proportion nd of nodes in

the independent sets with degrees, d = 0, 1, ..., d∗, for large n is given by

nd =
1− 2α

1− α

(
α

1− α

)d
, (15)

where

d∗(n, α) =
ln
(
(1−2α)n
2(1−α)

)
ln
(
1−α
α

) .

These equations precisely define the equilibrium degree distribution in the interbank

market. In the empirical section below, we will test the correspondence to the observed

empirical distribution in the European interbank market.

5 Empirical analysis

5.1 Static Model Estimation and Identification

We begin by defining a network of banks. Banks conduct transactions with other banks

nearly continuously; as such, we make an assumption about what defines a network. Since
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the vast majority of transactions are overnight transactions and banks use the interbank

loan market for rectifying deposit imbalances, one surmises that a reasonable network is

characterized by the transactions that occur in a short time frame. A one-day time period

is a natural time period to start. That said, many overnight interbank loans are rolled over

the following day. While the lending bank typically has the option to withdraw funding, the

persistence in relationships implies that the networks that determine lending choices may

be slightly longer than a day. We will use one day as a benchmark measure of networks.8

Further supporting the use of a short-term network measure, the model above takes the

interbank lending/borrowing decision as the tool to balance the bank’s assets and liabilities,

taking the remainder of the balance sheet as given. Once we consider other assets and

liabilities with longer maturies, alternate network measures may be important.

Assume that there are K networks in the economy, defined by the number of days. Each

network contains nk banks. We can then estimate the direct empirical counterpart of the

first-order condition in the static model above, equation (6):

qi,κ = c+ φ
1

gi,k

nκ∑
j=1

gij,κqj,κ + υi,κ, for i = 1, ..., nκ ; κ = 1, ..., K. (16)

where c = 1
2
a − 1

2

∑n
j=1,j 6=i qj. This equation indicates that the equilibrium quantity choice

of a bank is a function of quantity choices of others in the same market. We denote as qi,κ

the lending or borrowing of bank i in the network k, gi,k =
∑nκ

j=1 gij,κ is the number of direct

links of i, 1
gi,k

∑nκ
j=1 gij,κqj,κ is a spatial lag term and υi,k is a random error term. The spatial

lag term is equivalent to an autoregressive term in a panel regression with the added feature

that it only counts paths through connected agents. A length-three connection in this model

through lending connections is equivalent to a three period lag in an autoregressive model.

This model is the so-called spatial lag model in the spatial econometric literature (see, e.g.

Anselin 1988).9

8We have conducted extensive sensitivity analysis on this assumption that is available on request from

the authors.
9In the empirical model, we work with a row-standardized adjacency matrix, i.e. if we normalize the

spatial lag term by gi,κ =
∑nκ
j=1 gij,κ, the number of direct links of i. Because a row-standardized matrix

implies that the largest eigenvalue is 1, we present the analysis using this approach to ease the interpretation
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Identification

Because of the typical simultaneity problem in dealing with spatial lag models,10 which

yields inconsistent OLS estimators, we estimate usingMaximumLikelihood (see, e.g. Anselin,

1988). More importantly, we discuss here how one can directly use our structural view of

networks as a tool for identification. Calvó-Armengol, Patacchini and Zenou (2009) shows

how one can exploit the network architecture to link the equilibrium conditions in Ballester,

Calvó-Armengol and Zenou (2006) and the econometric methods of Bramoulle, Djebbari and

Fortin (2009). The outcome allows us to make causal claims about the role of networks on

financial variables.

How does this work? Our goal is to make the claim that we are estimating the φ that

corresponds to the equilibrium outcome of the game describing in section 3. There are two

issues that much be resolved. First, the simultaneity problem that emerges in spatial models

is resolved through the well known MLE methods discussed in Anselin (1988). Second,

we must resolve the reflection problem. This is a form of endogeneity unique to networks

problems. This arises from the fact that if we calculate the expected mean outcome of the

group, then the expectation of q will appear on both sides of the equation. This generates

a particular type of endogeneity problem. That is, the expected mean outcome is perfectly

collinear with the mean background of the group: how can we distinguish between bank i′s

impact on j and j′s impact on i? This is call the “reflection problem”(Manski, 1993). This

problem is salinet if the network is complete, meaning all agents connect to all others.11

Effectively, we need to find an instrument: a variable that is correlated with the behavior of

i but not of j. Bramoullé, Djebbari and Fortin (2009) noted that in incomplete networks,

of the results. Indeed, by providing a common upper bond for φ, it allows a comparison of the importance

of systemic risk in different network structures, i.e. for different G matrices.
10This stems from the fact that the spatial lag term contains the dependent variable for neighboring

observations, which in turn contains the spatial lag for their neighbors, and so on, leading to a nonzero

correlation between the spatial lag and the error terms.
11A number of solutions exist to this reflection problem. Brock and Durlauf (2001) use a structural

approach to identification, Glaeser, Sacerdote and Scheinkman (1996) use the variance of group average

outcomes, and Cohen-Cole (2006) uses the presence of multiple group influence. Each of the latter two

were later formalized further by Graham (2008) and Bramoullé, Djebbari and Fortin (2009), respectively.

Topa (2001) and Conley and Topa (2002) use spatial clustering techniques to identify spillovers. A complete

network is one in which every node is directly connected to every other node.
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one observes ‘intransitivities.’ These are connections that lead from i to j then to k, but

not from k to j. Thus, we can use the partial correlation in behavior between i and j as

an instrument for the influence of j on k. That is, network effects are identified and we can

make causal statements, if we can find two banks in the economy that differ in the average

connectivity of their direct contacts. A formal proof is in Bramoullé, Djebbari and Fortin

(2009). Of course, a complex trading network such as the one we are concerned with has

a very rich structure that permits identification. Thus, using the precise architecture of

networks we can obtain estimates of the relevant structural parameters.

Finally, due to the fact that agents in the same network, k, could be lending or borrowing

do to similar incentives, all of our results control for network fixed effects.

5.2 Estimation results

The estimation results of model (16) for each network of one day of transactions are contained

in Table 2. We report the results for each year between 2002 and 2009; each year’s results is

the average of the estimates for each day.

[Insert Table 2 here]

Panel A shows the results from lending networks. Panel B shows the results from bor-

rowing networks.

Total Systemic risk - λ

To understand systemic risk, we want to understand both the total risk to the system λ,

as well as the contributions of each agent to that risk. We begin with the total risk.

The first row of each panel shows the estimates of our target parameter φ, which converts

simply to λ = 1/(1−φ). This is our measure of systemic risk. As highlighted in the theoretical

model, the parameter φ captures the strength of network interactions that stems from the

network architecture. This strength is easily interpreted as the quantity of loans that are

re-lent or re-borrowed into the network. For example, if bank i lends $100 to bank j and j

relends $60 to bank k, the φ parameter will equal 0.6.

To see how this converts into a measure of systemic risk, notice that in a complete network

(one in which every agent is connected to every other), a parameter of 0.6 implies that each
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loan of $100 is relent in some proportion to every other bank such that the total relent is $60.

One can show then that the multiplier effect, the total re-lent for each $1 lent is calculated

as λ = 1/(1− φ). Why? Because the first dollar was relent out at .6, that .6 out at .36, etc.

The infinite sum converges to λ = 1/(1− φ). Of course, the total effect is precisely what we

wish to understand as a measure of the amplification of a shock to a given agent. If φ = 0.6

Each $1 change will impact the system 2.5 = λ = 1/(1− 0.6).

In the incomplete networks that we study, this λ value is an average; the risk will depend

on where the shock hits and the precise network of connections. Our estimate φ is thus a

mean outcome. Because this market is not complete, risk is propagated through the network

via realized loans. In such a context, the impact of a given bank must pass through a limited

number of other agents, as described by the transaction pattern. As the effect dissipates

in each successive link, the impact on directly connected agents is necessarily greater (see

equation 7). One can see then that for directly connected agents, the impact of systemic

risk is much larger; being ‘close’to an impacted party leads to a greater risk of impact.12

Thus, while the average impact is 2-2.5 times in the initial shock, the maximum shock a

bank may face will be many times larger. Figure 6 shows the variance of centrality figures

for networks in each of the 8 years in our data. As variance increases, the difference between

the maximum and minimum shock rises as well.

The positive and statistically significant estimates of φ point towards the existence of

a cross-sectional dependence in quantities that is not explicitly mediated by the market.

Looking at the R−squared values, one can see that such network effects explain around
5% to 10% of the variation of individual bank lending and borrowing respectively. These

results are roughly consistent over time. Network structure thus appears as an important

mechanism that determines a bank’s lending and borrowing activity.

Contribution to Systemic risk - λi
12One can think of this as how banks’liquidity is impacted by the systemic risk in the network. A bank

will gain (lose) when the banks linked to her gain (lose). Below in this section, we look at the extent to

which banks’liquidity is affected by changes in banks’centrality, which is a trasformation of the systemic

risk parameter (equation 7). That is, does it help to change position in the network?
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Given that the first measure, λ, measures only aggregate risk to the system, we develop

a second measure that describes the individual contribution to the total risk of the system.

This measure provides regulators with an ability to understand which banks are the largest

risk to the system. Note that the measure used it will not be the most connected or the

largest institution, but rather the one that contributes to most to the propagation of shocks.

This contribution to propagation depends not only on number of links, but also on the

number of links of connected agents, and their links and so on.

We return now to the Bonacich centrality measure used in the two models above. Recall

that this centrality was directly related both to the equilibrium quantity choice and the

evolution of the network through the linking choices of each agent. The table show two

statistics, the first is the impact of a one-unit change in the Bonacich centrality. The second

is the variance of the contribution to systemic risk, var (λi).

To get these number, we use our estimated φ for each network to calculate the Bonacich

centrality for each bank in our networks (equation 7). This calculation will generate a dis-

tribution of individual centralities depending on the strength of network interactions and on

the heterogeneity of network links (as captured by the estimate of φ and the matrix G in

formula (7), respectively). Our results shows that the influence of network structure varies

greatly over time. So, for example, a unit increase in Bonacich centrality, i.e. a better bank

positioning in the network, raises lending about 17 million in 2002 and 3 million in 2009.

The one-unit impact of a change in individual centrality moves significantly over time, as

does the variance of individual centrality for each network. Figure 6 plots these patterns for

the lending market.

[Insert F igure 6 here]

Lending vs Borrowing

Even as we continue to capture the relevance of network structure, its role is not constant.

Why? As we approach crisis in 2006, the market was very, very liquid, but the central lenders

became increasingly important. The importance of centrality became very large; moving

from the periphery to the center meant very large changes in liquidity provision. These
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changes were 4/5 times larger than in 2002/2003. With the onset of the crisis the role of the

central lenders declined.

The borrowing market looked a bit different. Here the importance of central players and

the variance of centrality both declined secularly over time, with a slight up-tick during the

crisis. We interpret this as the converse of the lending market. As lenders became more

centralized, borrowers became more dispersed, with many relying a few key lenders. As

the crisis hit and lenders dispersed, we begin to see some additional concentration on the

borrowing side.

Thus we view our results as illustrating that the model can explain the role of network

structure consistently over time, even as the market changes along many dimensions. By

being able to do so, the method has great value. In particular, one can think of a couple

of dimensions of systemic risk. The first, the average impact on the network of a shock, is

captured in our systemic risk estimates. The second reflects the distributional impacts of

a shock. As the variance of Bonacich centrality changes, it reflects changes in how shocks

are absorbed by the market. A high variance suggests that a concentrated group of banks

will absorb the total effect of the shock. Example here are the contagious default model

where successive agents bear the full cost of the default and a zero variance case in which

the shocks will be equally distributed across all agents in the network.

5.3 Network formation

Our theoretical model of Section 4 provides a set of predictions for network structure that

depend on a single parameter. This result emerges because agents can adopt a very simple

link formation rule that depends only on the Bonacich centrality of the instantaneous network

structure. Because profits are greater when one links with those with higher Bonacich

centrality, link formation patterns can be described in a parsimonious way.

That link formation is a function of profitability is crucial to understanding systemic risk

in the context of this type of model. The incentive process produces predictable network

patterns, as we discussed above. Thus, as a result, the model provides additional ability to

understand and explain systemic risk, over and above what would be feasible with reduced
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form approaches.

The key parameter for determining network structure, is the probability of creating a

link, α. This parameter is exogenous to the dynamic model, and provides us with a way to

determine the effi cacy of the dynamic model is describing the observed pattern. Notice that

Proposition 2 describes the precise relations between the α and the degree distribution on

the entire network. Recall that the each agent has a degree, which is the count of number of

links to other agents. Recall as well that the degree distribution is simply the distribution

over agents in a particular network of their respective degrees. So, the model generates a

prediction for the degree distribution that is a precise function of α.

Empirically the probability of creating a link (α) can be estimated by considering the

ratio between the number of actual links and the possible ones (in a network of given size).

Such a comparison between empirical and theoretical degree distributions will allow as to

identify the relevant network definition which is consistent with our behavioral model. Figure

7 shows the theoretical degree distributions that are obtained when calibrating the model

for different values of α.

[Insert F igure 7 here]

Figure 7a shows the estimated values of α on a daily basis between 2002 and 2009.

The graph thus shows that at the beginning of the period (January 2002) the estimated link

creation is about 0.4, whereas at the end of the period (December 2009) it has fallen to about

0.25. The fall reflects that the network has become more sparse once the crisis took hold.

This occurred both because the ECB began to provided unlimited access to funds through

its full allotment policy and because market participants may have become less willing to

lend.

[Insert F igure 7a here]

Figure 8 then compares the degree distribution predicted by our model against the data

in three ways. Figure 8a and 8b shows the full degree distribution for α at two points

in time. Figure 8a shows α = 0.4, corresponding to January 2002 and Figure 8b shows
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α = 0.25, corresponding to December 2009. The important feature of these two figures is

that the dynamic model captures the change in degree distribution that occurs as a result

of the crisis. As the networks become more sparse (α declining), the incentives to form new

links change. We can see in these two figures that the change network formation behavior

observed in these markets is closely matched by the model’s predictions.

[Insert F igures 8a and 8b here]

Figure 5c shows that this close alignment between model and data occurs over the entire

time period. We plot the 0 degree component of the degree distribution for 250 networks

over the 8 year time period. A perfect prediction would yield a 45 degree line; here we find a

slight divergence, but a very consistent ability of the model to predict the network structure

in the data.

[Insert F igure 8c here]

Accompanying these three figures, we measure the goodness of fit of the model, but

regressing the observed degree distribution with the predicted one. We break our data in

approximately 250 time periods. Each observation in our regression then corresponds to a

time period, degree pair. So, an observation may be time period 25, degree 10. For this

observation, we will have the estimated and the theoretically predicted percentage of banks

with 10 links. Regression results are available in table 3.

[Insert table 3 here]

Column 1 of table shows the regression of the entire sample. This specification has an R2

of .79. Column 2 includes a level shift for each of the 50 possible degrees. By viewing each of

the degree separately, the specification explains more than 98% of the variation in the data.

To evaluate whether this approach is successful before or after the crisis, or both, we break

the sample at August 2007 and report show separate regressions in each time period. Post

August 2007, the model explains essentially all of the variation.

That the model produces distributions that are empirically so close to the data supports

the ability of the static model to generates estimates of systemic risk that are plausible. In
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particular, it allows us to claim that the results are robust to selection issues, the incentive

of agents to change partners. We proceed in the next section to estimate the systemic risk

spillover for our networks.

6 Extension to Heterogeneous Agents and Prices

To this point, our model has assumed that agents are identical in every dimension except for

their network position. In this section, we extend our model to allow for variation along two

dimensions. The first is in demand, our parameter θ, which we generalize to θi. The second

is to allow for bank-specific default risk. We introduce di to reflect the bank-specific default

risk premium paid by a bank for a loan on the interbank market. We assume here that this

risk premium is publicly observable and has no uncertainty. This class of models can also

permit uncertainty; however, we save a full elaboration of this for future work.

Allowing for heterogeneity means we can rewrite equation (2) above as:

pi = θi + di −
∑
j∈N

qj

This means that the interest rate (i.e. price) pi of each loan is going to be bank specific.

This implies that the profit function of each firm i in network g can be written as:

πi(g) = ai qi −
∑
j∈N

qiqj + φ
n∑
j=1

gijqiqj

where ai ≡ θi + di − c0. First-order condition gives for each i:

q∗i = ai −
∑
j∈N

q∗j + φ

n∑
j=1

gijq
∗
j (17)

To characterize the Nash equilibrium of this new game, we need to generalize Definition

1 of the Katz-Bonacich centrality (see (7)). Indeed, the weighted Katz-Bonacich centrality

of parameter φ in g is defined as:

b(g, φ) =

+∞∑
k=0

φkGku = [I−φG]−1 u (18)
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where φ ≥ 0 is a scalar and u can be any n × 1 vector. When u = 1, then we are back to

the unweighted Katz-Bonacich centrality defined in (7).

Define b1 (g, φ) = b1,1 (g, φ) + ... + bn,1 (g, φ) as the sum of the unweighted Bonacich

centralities and ba (g, φ) = a1b1,a + .... + anbn,a as the sum of weighted Bonacich centralities

of all banks. Then, using Calvó-Armengol et al. (2009), we can derive the following result:

Proposition 3 Suppose that a 6= a1. Let a = max {ai | i ∈ N} and a = min{ai | i ∈ N},
with a > a > 0. If φω(G) + n (a/a− 1) < 1, then this game has a unique Nash equilibrium

in pure strategies q∗, which is interior and given by:

q∗ = ba (g, φ)− ba (g, φ)

1 + b1 (g, φ)
b1 (g, φ) (19)

Let us show how we obtain this result. We can write the first-order condition (17) in

matrix form:

q∗ = a− Jq∗ + φGq∗

where J is a n× n matrix of 1. Since Jq∗ = q∗1, this can be written as

q∗ = [I− φG]−1 (a− q∗1)

= ba (g, φ)− q∗b1 (g, φ)

Multiplying to the left by 1t and solving for q∗ gives:

q∗ =
ba (g, φ)

1 + b1 (g, φ)

Plugging back q∗ into the previous equation gives (19).

It should be apparent that the equilibrium form here is the same as derived in the static

model above (??)with homogeneous agents and without default risk.

7 Equilibrium Volatility with Heterogeneous Agents

Ex-ante heterogeneity enables us to provide specific loan pricing at the bank level. The

equilibrium price of a loan for each bank is:

p∗i = θi + di −
∑
j∈N

q∗j
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This allows us to characterize price volatility in equilibrium. Here our measure of volatil-

ity is the standard deviation of prices during the day in which the given network is active.

The volatility vol(g) can then be expressed as:

vol(g) = V arprices(g) =
1

n

n∑
i=1

(p∗i − p∗)
2

where p∗ = 1
n

∑n
i=1 p

∗
i is the average price in the loan market during the day.

Let us illustrate this result by using example 1 described above. A bit of math which

we suppress to the appendix illustrates that the prices and volatility of the circle and star

networks are noticebly different:

pC∗ = 1.270 and pS∗ = 2.510

volC∗ = V arC∗prices = 0.0192 and volS∗ = V arS∗prices = 3.562

8 Extension to Revenue Spillovers

As a final extension, we illustrate the our spillover mechanism through the cost channel is

not the only mechanism through which networks can have an impact. Let us now assume

that there are revenue spillovers due to network effects. We generalize the model above and

maintain our prior assumption that there are network effects in the cost function, i.e. ci(g),

is still given by (3):

ci(g) = c0 − φ1

[
n∑
j=1

gijqj

]
We will also assume that there are network effects on the revenue side, i.e.

θi = φ2

n∑
j=1

gijθj

so that

pi = θi −
∑
j∈N

qj = φ2

n∑
j=1

gijθj −
∑
j=1

qj

The interpretation of this spillover would be that the more a bank gives loans to other banks

the higher is the interest rate (price) of the loans. The profit function of each bank i in a
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network g is therefore given by:

πi(g) =

(
φ2

n∑
j=1

gijθj −
∑
j=1

qj

)
qi −

(
c0 − φ1

[
n∑
j=1

gijqj

])
qi

=

(
φ2

n∑
j=1

gijθj − c0

)
qi −

∑
j=1

qiqj + φ

n∑
j=1

gijqiqj

First-order condition gives:

qi = φ2

n∑
j=1

gijθj − c0 −
∑
j=1

qj + φ1

n∑
j=1

gijqj

Denoting q∗ =
∑
j=1

qj, we can write this first-order condition in matrix form as

q = φ2Gθ − (c0 + q∗)1+ φ1Gq

which is equivalent to

q = [I− φ1G]−1 φ2Gθ − (c0 + q∗) [I− φ1G]−1 1

= [I− φ1G]−1 bφ2Gθ (g, φ1)− (c0 + q∗)b1 (g, φ1)

We are back to the previous section case with ex ante heterogeneity and can again apply

Proposition 3. Denote αi = φ2
∑n

j=1 gijθj − c0 and let α = max {αi | i ∈ N} and α =

min{αi | i ∈ N}, with α > α > 0. Then if φ1ω (G) + n (α/α− 1) < 1, there is a unique

Nash equilibrium which is interior and given by:

q∗ = bφ2Gθ (g, φ1)−
bφ2Gθ (g, φ1)

1 + b1 (g, φ1)
b1 (g, φ1) .

While the solution is more complex than the single spillover above, notice that the general

form of the equilibrium quantities remains. As above, one can calculate prices and volatility

directly from this equation.

9 Discussion and Policy

Our approach is designed to understand the role of network structure on interbank lending.

As with any model and data, there are some limitations to the exercise. For example,
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while our data is exceptional in providing comprehensive coverage of the European interbank

market during most of the time period studied, e-MID particular role in the market limits the

capacity of the model to explain some shocks. Because e-MID is transparent, and European

banks have access to the ECB for emergency borrowing purposes, e-MID evolved as a way

to balance relatively small liquidity shocks. Larger structural shocks would be dangerous to

post on a public platform and access to the ECB provided an alternate outlet. As such, our

results should be seen as a way to analyze shocks and network impacts on the margin. That

said, this should indicate that increases in systemic risk in this market would understate the

level of risk in the market as a whole.

From a policy perspective, we emphasize the utility of using a structural approach to

network. To the extent that the model captures bank behavior, it allows policymakers with

the ability to test interventions with an eye both to how banks will optimize in the short-run

and how networks will form and re-form under each assumption.

An example is how one can interpret in our model the imposition of the ECB’s full allot-

ment policy. This policy permitted banks to access credit lines from the ECB in unlimited

quantities at a fixed rate. We can model this by removing many higher risk banks from

the market. It is a straightforward result of the static model that this will lower average

demand, Eθi, in this market and well as reduce average risk, Edi.

A second example is the use of exceptional capital cushions for SIFIs. Our approach

allows one both to identify the SIFIs that are the largest contributors to systemic risk,

λi, and what occurs if these banks have increased, and now binding, capital constraints.

To identify the largest contributors, the static model indicates simply that the banks with

the highest Bonacich centrality are those with the highest contribution. Their share of

contribution is calculated above as well.

An alternate approach, which takes into account how the network changes as a result

of a shock to an institution is beyond the scope of this paper. However, related work by

Liu et al (2011), has found that the because of network dynamics, the largest contributor

is not always the one with the highest centrality. This can occur depending on the type of

intervention as well as depending on the precise nature of the network.
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Using this information, an avenue for future research would be to evaluate optimal reg-

ulatory policy in the presence of networks. Given a particular objective function for the

regulator, such as minimizing volatility or minimizing total systemic risk, the approach here

could yield a set of capital constraints that solve the regulator’s problem. Notice that these

constraints would not necessarily have any of the cyclicality problems that a static, fixed

constraint does. For example, the regulator could optimize over contribution to systemic

risk over a period of time that includes recessions. Then, a capital cusion that depends on

the contribution to risk and position in the network would vary against the cycle.

10 Conclusion

We have constructed two models of the interbank loan market, a static and dynamic one. To

complement these, we have provided empirical evidence of the models’accuracy in describing

the data. Then, using these models, we have presented a measure of systemic risk in this

market, which is a precise measure of the aggregate liquidity cost of a reduction in lending by

an individual financial institution. This systemic risk measure is presented as an innovation

vis-a-vis existing approaches. It is based on the foundation of a microfounded dynamic

model of behavior. As well, it provides a tool to understand the transmission of shocks that

extends beyond default events and generalized price shocks. In the combination of these lies

our tool; the competitive responses that banks make generate the transmission of shocks in

our model and provide a tractable method of measuring and understanding sytsemic risk.

There are a number of tangible benefits to the models and methods presented in this

paper. The calculation of spillovers in interbank markets gives regulators an ability to gauge

the market’s sensitivity to shocks. We find multiples that grow as large as 2.5 times the

initial reaction. When we calculate similar risk in prices, we find that a one-unit change in

returns can propagate into the market, generating aggregate systemic risk multipliers that

are approximately 30 in most years; that is, a change in returns of one Euro to one bank

led to system-wide changes of about 30 Euros. In isolation, this suggests that the risk in

this market is principally in the cost of funding; in principle, loans can be obtained for a

suffi ciently high price.
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Appendix 1

Katz-Bonacich centrality

Let Gk be the kth power of G, with coeffi cients g[k]ij , where k is some integer. The matrix

Gk keeps track of the indirect connections in the network: g[k]ij ≥ 0 measures the number of

paths of length k ≥ 1 in g from i to j.13 In particular, G0 = I.

Given a scalar φ ≥ 0 and a network g, we define the following matrix:

M(g, φ) = [I−φG]−1 =
+∞∑
k=0

φkGk

where I is the identity matrix. These expressions are all well-defined for low enough values

of φ. It turns out that an exact strict upper bound for the scalar φ is given by the inverse of

the largest eigenvalue ofG (Debreu and Herstein, 1953).14 The parameter φ is a decay factor

that scales down the relative weight of longer paths. If M(g, φ) is a non-negative matrix,

its coeffi cients mij(g, φ) =
∑+∞φk

k=0 g
[k]
ij count the number of paths in g starting from i and

ending at j, where paths of length k are weighted by φk. Observe that since G is symmetric

thenM is also symmetric.

Nash Equilibrium and Katz-Bonacich centrality

Let us show how the first order condition can be written as a function of Katz-Bonacich

centrality. For each bank i = 1, ..., n, maximizing (4) leads to:

q∗i = a−
n∑
j=1

q∗j + φ

n∑
j=1

gijq
∗
j (20)

We can write this equation in matrix form to obtain:

q∗ = a1− Jq∗ + φGq∗

13A path lof length k from i to j is a sequence 〈i0, ..., ik〉 of players such that i0 = i, ik = j, ip 6= ip+1, and

gipip+1 > 0, for all 0 ≤ k ≤ k − 1, that is, players ip and ip+1 are directly linked in g. In fact, g[k]ij accounts
for the total weight of all paths of length k from i to j. When the network is un-weighted, that is, G is a

(0, 1)−matrix, g[k]ij is simply the number of paths of length k from i to j.
14In a row-standardized matrix, the largest eigenvalue is 1. We will work with row-standardizedGmatrices

in our empirical analysis.
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where J is a n× n matrix of 1. Since Jq∗ = q∗1, this can be written as

q∗ = [I− φG]−1 (a− q∗)1

= (a− q∗)b (g, φ)

Multiplying to the left by 1t and solving for q∗ gives:

q∗ =
ab (g, φ)

1 + b (g, φ)

where b (g, φ) = 1tb (g, φ). Plugging back q∗ into the previous equation gives

q∗ =
a

1 + b (g, φ)
b (g, φ)

which is (8).

Dynamic Model Transitions

Denote by N(d, t) the number of agents with degree d ≤ K/2 at time t. It can be shown

that the dynamic evolution is given by:

N(d, t′ + 1)−N(d, t′) =

(
1− α
n

)
N(d+ 1, t′) +

α

n
N(d− 1, t′)− 1

n
N(d, t′) (21)

N(0, t′ + 1)−N(0, t) =

(
1− 2α

n

)
− α

n
N(0, t) +

(
1− α
n

)
N(1, t) (22)

These equations mean that the probability to add nodes to banks with degree d is propor-

tional to the number of nodes with degree d−1 (resp. d+1) when selected for node addition

(deletion). The dynamics of the adjacency matrix (and from this the complete structure of

the network) can be directly recovered from the solution of these equations.

Since the complement Ḡ of a nested split graph G is a nested split graph, we can derive

the stationary distribution of networks for any value of 1/2 < α < 1 if we know the cor-

responding distribution for 1 − α. With this symmetry in mind we restrict our analysis in
the following to the case of 0 < α ≤ 1/2. Let {N(t)}∞t=0 be the degree distribution with the
d-th element Nd(t), giving the number of nodes with degree d in G(t), in the t-th sequence

N(t) = {Nd(t)}n−1d=0 . Further, let nd(t) = Nd(t)/n denote the proportion of nodes with de-

gree d and let nd = limt→∞ E(nd(t)) be its asymptotic expected value (as given by µ). In
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the following proposition (König, Tessone and Zenou, 2010a), we determine the asymptotic

degree distribution of the nodes in the independent sets for n large enough.

Example 1

Consider the network g in Figure 9 with three agents.

t t t
2 1 3

Figure 9. Three agents on a line.

The corresponding adjacency matrix is,

G =

 0 1 1

1 0 0

1 0 0

 ,
The kth powers of G are then, for k ≥ 1:

G2k =

 2k 0 0

0 2k−1 2k−1

0 2k−1 2k−1

 and G2k+1 =

 0 2k 2k

2k 0 0

2k 0 0

 .

For instance, we deduce from G3 that there are exactly two paths of length three between

agents 1 and 2, which are 12→ 21→ 12 and 12→ 23→ 32.

When φ is small enough,15

M = [I−φG]−1 =
1

1− 2φ2

 1 φ φ

φ 1− φ2 φ2

φ φ2 1− φ2


and the vector of Katz-Bonacich network centralities is:

b(g, φ) =

 b1 (g, φ)

b2 (g, φ)

b3 (g, φ)

 =
1

1− 2φ2

 1 + 2φ

1 + φ

1 + φ


15Here, the largest eigenvalue of G is

√
2, and so the exact strict upper bound for φ is 1/

√
2.
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Not surprisingly, the center (bank 1) is more central than the peripheral banks 2 and 3.

The Nash equilibrium is then given by (using (??)):

q∗ =

 q∗1
q∗2
q∗3

 =
a

4 (1 + φ)
(
1− 2φ2

)
 1 + 2φ

1 + φ

1 + φ



volatility calculation for circle and star network

Specifying

θ =


0.5

0.8

0.1

0.9

 , d =


0.75

0.4

1.4

0.6

 and c0 =


0.2

0.1

0.5

0.3


we have

a =


1.05

1.1

1

1.2


The eigenvalue condition φω(G) + n (a/a− 1) < 1 can be written as: φ < 0.2. This is an

upper bound so φ can still be greater than 2. For the circle network, the Bonacich centralities,

unweighted and weighted, are respectively given by:

bC1 (g, φ) =
1(

1− φ3 − φ4
)


1 + φ+ 2φ2 + φ3

1 + 2φ+ 2φ2 + φ3

1 + φ+ φ2

1 + φ+ φ2 + φ3



bCa (g, φ) =
1

20
(
1− φ3 − φ4

)


21 + 22φ+ 44φ2 + 24φ3

22 + 44φ+ 45φ2 + 21φ3

20 + 24φ+ 21φ2 + 2φ3

24 + 21φ+ 22φ2 + 20φ3
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and the equilibrium loan quantities by:


qC∗A
qC∗B
qC∗C
qC∗D

 =


18 + 17φ+ 39φ2 + 6φ3 − 35φ4 − 56φ5 − 63φ6 − 24φ7

23 + 45φ+ 49φ2 − 2φ3 − 68φ4 − 94φ5 − 70φ6 − 21φ7

13 + 22φ+ 15φ2 − 11φ3 − 35φ4 − 37φ5 − 17φ6 − 2φ7

33 + 27φ+ 29φ2 − 13φ3 − 60φ4 − 56φ5 − 49φ6 − 20φ7


20
(
1− φ3 − φ4

) (
50 + 50φ+ 60φ2 + 2φ3 − φ4

)
For the star-shaped network, we have:

bS1 (g, φ) =
1

1− φ


1

1 + φ

1

1



bSa (g, φ) =
1

1− φ


21+24φ−φ2
20(1+φ)

1.1 (1 + φ)
5+6φ
5(1+φ)
6+5φ
5(1+φ)


and 

qS∗A
qS∗B
qS∗C
qS∗D

 =
1

1− φ


0.02

(
9 + 4φ− 13φ2

)
/ (1 + φ)

0.23− 0.02φ− 0.21φ2

0.01
(
13 + 8φ− 21φ2

)
/ (1 + φ)

0.01
(
33− 12φ− 21φ2

)
/ (1 + φ)


Thus the price for each bank for a loan are given by:
pC∗A
pC∗B
pC∗C
pC∗D

 =
1

20
(
50 + 50φ+ 60φ2 + 2φ3 − φ4

)


1163 + 1139φ+ 1368φ2 − 17φ3 − 25φ4

1113 + 1089φ+ 1308φ2 − 19φ3 − 24φ4

1413 + 1389φ+ 1668φ2 − 30φ4 − 7φ3

1413 + 1389φ+ 1668φ2 − 30φ4 − 7φ3


for the circle network and by

pS∗A
pS∗B
pS∗C
pS∗D

 =
1

1 + φ


0.38 + φ+ 0.91φ2 + 0.21φ3

0.33 + 0.95φ+ 0.91φ2 + 0.21φ3

0.63 + 1.25φ+ 0.91φ2 + 0.21φ3

0.63 + 1.25φ+ 0.91φ2 + 0.21φ3
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for the star-shaped network.

The mean price in each network is given by:

pC∗ =
5102 + 5006φ+ 6012φ2 − 50φ3 − 109φ4

80
(
50 + 50φ+ 60φ2 + 2φ3 − φ4

)
and

pS∗ =
1.97 + 4.45φ+ 3.64φ2 + 0.84φ3

1 + φ

and therefore the variances of prices are:

volC∗ = V arC∗prices = 0.0192

volS∗ = V arS∗prices =
2.2 + 9.9φ+ 19.23φ2 + 20.09φ3 + 11.66φ4 + 3.44φ5 + 0.40φ6

(1 + φ)2

For φ = 0.2, we have:
qC∗A
qC∗B
qC∗C
qC∗D

 =


0.0185

0.0273

0.0144

0.0318

 and


qS∗A
qS∗B
qS∗C
qS∗D

 =


0.193

0.272

0.143

0.310


and 

pC∗A
pC∗B
pC∗C
pC∗D

 =


1.158

1.108

1.408

1.408

 and


pS∗A
pS∗B
pS∗C
pS∗D

 =


0.515

0.465

0.765

0.765


Also,

pC∗ = 1.270 and pS∗ = 2.510

volC∗ = V arC∗prices = 0.0192 and volS∗ = V arS∗prices = 3.562

Network externality on loan equilibrium

The first order condition is:

q∗i = a−
n∑
j=1

q∗j + φ

n∑
j=1

gijq
∗
j

or in matrix form
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q∗ = a1− Jq∗ + φGq∗

where J is a n× n matrix of 1. Since Jq∗ = q∗1, this can be written as

q∗ = a1− q∗1+ φGq∗

Multiplying to the left by 1t, we get

q∗ =

(
n

1 + n

)
a+

(
φ

1 + n

)
1tGq∗

or equivalently:

qNET∗ =

(
n

1 + n

)
a+

(
φ

1 + n

) n∑
i=1

n∑
j=1

gijqj (23)

By plugging back this equation into the first-order condition, we obtain:

qNET∗i =
a

(1 + n)
+ φ

n∑
j=1

gijq
∗
j −

(
φ

1 + n

) n∑
i=1

n∑
j=1

gijqj

which is equivalent to:

q∗i =
a

(1 + n)
+

(
n

1 + n

)
φ

n∑
j=1

gijq
∗
j −

(
1

1 + n

)
φ

n∑
k 6=i

n∑
j=1

gkjq
∗
j (24)
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2002 2003 2004 2005 2006 2007 2008 2009

Overnight Lending Only

Average Daily Volume (mm euros) 10,046 9,666 10,458 9,577 8,912 7,615 6,028 3,669
Daily standard dev of volume 1,321 1,860 1,360 1,389 1,563 1,146 1,389 816
Daily standard dev of prices 0.12 0.35 0.09 0.09 0.38 0.23 0.53 0.46
Number of Loans 130,614 114,844 104,393 97,551 90,370 86,453 75,933 52,743

largest 25 lenders in 2002
Total Lending (mm euros) 1,634 1,913 2,162 2,033 2,109 1,326 346 181
Fraction of total 16% 20% 21% 21% 24% 17% 6% 5%
Number of loans 14,755 14,766 15,793 14,645 14,759 9,408 2,635 1,701

Panel B
All Lending

Average Daily Volume (mm euros) 17,892 18,369 21,258 22,412 24,745 22,835 13,731 5,516
Daily standard dev of volume 2,606 3,940 4,028 3,580 4,662 6,262 3,628 1,810
Daily standard dev of prices 0.11 0.34 0.08 0.09 0.38 0.23 0.53 0.47
Number of Loans 166,139 143,562 129,082 124,444 118,548 110,596 93,069 60,124

largest 25 lenders in 2002
Total Lending (mm euros) 2,370 2,975 2,800 2,946 2,587 1,697 1,210 32
Fraction of total 13% 16% 13% 13% 10% 7% 9% 1%
Number of loans 15,108 17,669 14,774 13,085 11,254 6,222 3,626 176

Table 1: Summary Statistics



2002 2003 2004 2005 2006 2007 2008 2009

Lending Networks

Average φ Coefficient 0.577 0.569 0.544 0.546 0.547 0.550 0.530 0.494
    t - statistic 3.373 3.266 2.950 2.976 2.989 3.008 2.792 2.414

Average Systemic Risk Multiplier -  2.36 2.32 2.19 2.20 2.21 2.22 2.13 1.98
Variance of contribution to Systemic Risk - var (i) 42.50 55.75 29.37 203.54 202.15 18.46 94.29 14.58

R-Squared 0.07 0.07 0.07 0.06 0.07 0.06 0.07 0.06

Impact of Unit Change in Centrality 13.86 7.89 5.69 25.40 31.82 2.10 31.70 1.75

Correlation between var (i) and Unit change in centrality 84%

2002 2003 2004 2005 2006 2007 2008 2009

Borrowing Networks

Average φ Coefficient 0.591 0.567 0.541 0.549 0.528 0.527 0.488 0.478
    t - statistic 3.583 3.246 2.936 3.009 2.789 2.819 2.431 2.268

Average Systemic Risk Multiplier -  2.44 2.31 2.18 2.22 2.12 2.12 1.95 1.92
Variance of contribution to Systemic Risk - var (i) 59.82 21.05 8.64 6.16 21.57 27.99 21.26 5.61

R-Squared 0.09 0.07 0.07 0.07 0.07 0.07 0.05 0.05

Impact of Unit Change in Centrality 28.32 3.74 0.29 0.71 3.33 4.85 3.67 0.09

Correlation between var (i) and Unit change in centrality 95%

Table 2: Interbank Network Systemic Risk
Note: Panel A shows results from the lending networks. Panel B shows results from the borrowing networks. Each of the two panels shows estimation results from model (14). We report the average estimates for each year between 2002 and 2009. Recall 
that model (14) estimates the relationship: q_{i,κ}=c+φ(1/(g_{i.,k}))∑_{j=1}^{n_{κ}}g_{ij,κ}q_{j,κ}+υ_{i,κ}  , i.e. the individual loan volume on the network patterns of the loan volume of the rest of the market. The adjacency matrix of realized 
trades is a symmetric, non-directed matrix of 1's and 0's with 1's indicating the presence of a loan and 0 the absence. The first row shows the estimates of the parameter φ, the systemic risk measure, from the above specification. T-statistics are reported 
below coefficient estimates.  The average systemic risk multiplier is total network impact of a one unit shock to an individual bank loan volume. Averaging across the impact for all individuals in the network produces this number, which is equal to 1/(1-
φ).

Panel A

Panel B



(1) (2) (3) (4) (5) (6) (7)
sample all all post-crisis pre-crisis post-crisis pre-crisis all

Theoretical Distribution 0.838*** 0.254*** 0.816*** 0.852*** 0.436*** 0.120*** 0.825***
(0.00369) (0.00346) (0.00474) (0.00504) (0.00763) (0.00477) (0.00385)

Constant 0.0146*** 0.0111*** 0.0173*** 0.00344***
(9.59e-05) (0.000186) (0.000121) (0.000276)

Fixed Effect no degree degree degree time

Observations 12,699 12,699 3,570 9,129 3,570 9,129 12,699
R-squared 0.803 0.986 0.893 0.758 0.992 0.986 0.787

Table 3: Dynamic Model Fit

Note: The table shows estimation resultsfrom a regression of measured (empirical) degree distribution on model-predicted degree distribution. To determine the model-predicted distribution, we simply calculate the fraction of 
0,1,…,n degree nodes at each points in time using the dynamic model from the text. We break our data in approximately 249 time periods. Each observation in our regression then corresponds to a time period, degree pair. So, an 
observation may be time period 25, degree 10. For this observation, we will have the estimated and the theoretically predicted percentage of banks with 10 links. Column 1 of table shows the regression of the entire sample.  Column 
2 includes a level shift (fixed effect) for each of the 50 possible degrees. Columns 3 and 4 break the sample into pre-crisis and post-crisis time periods. Columns 5 and 6 show pre- and post- crisis with a fixed effect by degree. 
Column 7 shows the full sample with fixed effects by time period instead of by degree. OLS specifications in model 1, 3 and 4 have no constant as implied by the model.



Note: Panel A shows a set of transaction between 4 banks. Each arrow is a single loan, with the arrow pointing towards the borrower.
Panel B shows the equilibrium quantity choice for each agent and Panel C shows the market price in each case.

Figure 1: Static Model
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Note: Panel A shows a set of transaction between 4 banks. Each arrow is a single loan, with the arrow pointing towards the borrower.
Panel B shows a single period of the dynamic model. In network A, bank D drops a link and chooses the lowest Bonacich centrality counterpart (C). In
Network B, bank A adds a connection. Since already connection to highest centrality (D), adds second highest (B or C).

Figure 2: Dynamic Model
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Slide 2

E1 YVES - can you update each A and B as it goes through a single time period of the dynamic model? 

Let's assume with both that A faces an increase link case.

I'll clean up after you write solution.
Ethan, 11/4/2011
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Figure 4: Daily Lending Quantities

Figure 4 shows daily lending quantities over the sample for overnight and longer term lending. The black solid line reports overnight lending quantities. The grey dashed line reports all other lending. 
Each has a 2 month moving average trend added.
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Figure 5: Daily Price Volaility

Figure 5 reports the daily standard deviation of prices (taken over prices during the day and normalized). The price volatility itself is reported in a grey dashed line and the 2‐month moving average 
reported in a black solid line.
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Figure 6: Distribution of Systemic Risk Contribution Over Time

Variance of Contribution to
Risk ‐ Lending

Variance of Contribution to
Risk ‐ Borrowing

Figure 6 shows the time series of two variables. Each reports one value for each year of data between 2002 and 2009.  The show the variance of bonacich centrality across agents at each point in time.
Recall that the contribution to systemic risk is measured as the relative value of the bonacich centrality. This figure thus reflects the variance of contribution to systemic risk over time. 
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Figure 7a: Dynamic Model Output: Theoretical Degree Distribution

alpha=0.25

alpha=0.3

alpha=0.4

alpha=0.45

Figure 7a shows the theoretical degree distribution of the dynamic network formation model in the paper. For each level of α (link formation probability), the model general an invariant distribution of
network links. Precise invariant distribution is described in the text: n(d)=((1‐2α)/(1‐α))((α/(1‐α)))^{d}, where n is the proportion at end degree. We report these distributions for α={.25, .3, .4, .45}.
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Figure 7b: Estimated Link Formation Probability (Alpha) 

Figure 7b shows the estimated probability of link formation for each network. Recall that we use a network definition of 1 day as a benchmark. 
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Figure 8
a: Empirical vs Theoretical Degree Distribution – January 2002

empirical distribution

theoretical distribution

Figure 8a shows the empirical degree distribution of the network that existed on January 9, 2002. On the same figure, we plot the theoretical distribution generated by the empirical link formation
probability on that day.
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Figure 8b: Empirical vs Theoretical Degree Distribution ‐ Dec 2009

empirical distribution

theoretical distribution

Figure 8b shows the empirical degree distribution of the network that existed on December 31, 2009. On the same figure, we plot the theoretical distribution generated by the empirical link formation
probability on that day.
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Figure 8c: Dynamic Model: Model Fit

Pre‐Crisis

Figure 8c shows a scatterplot of two variables. The first (on the horizontal axis) is the fraction of zero‐degree participants in network (1 day) in our dataset. The second (on the vertical axis) is the
fraction of zero‐degree participants implied by our dynamic model, conditional on the α for that given network. Recall that α is the empirical probability of link formation. A 45% line implies that the
model works perfectly and a high correlation implies that the model is consistent over a wide range of network structures.
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