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Abstract

We consider a network game with strategic complementarities where the individual

reward is unknown. We study the impact of incomplete information on a network

policy which aim is to target the most relevant agents in the network (key players).

Compared to the complete information case, we show that the optimal targeting may

be very different.
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1 Introduction

Network analysis is a growing field within economics1 because it can analyze situations where

agents interact with each other and provides interesting predictions in terms of equilibrium

behavior. A recent branch of the network literature has focused on how the network structure

influences individuals’ outcomes. This is modeled by what are sometimes referred to as

“games on networks” because the network is assumed to be fixed and the focus is on the game

played in the network. An important paper in this literature is that of Ballester et al. (2006).

They compute the Nash equilibrium of a network game with strategic complementarities

when agents choose their efforts simultaneously. In their setup, restricted to linear-quadratic

utility functions, they establish that the network game has a unique Nash equilibrium where

each agent effort’s is proportional to her Katz-Bonacich centrality measure. This is a measure

introduced by Katz (1953) and Bonacich (1987), which counts all paths starting from an

agent but gives a smaller value to connection that are farther away.

De Martí and Zenou (2016) consider a model similar to that of Ballester et al. (2006)

but where the individual reward is partially known. In other words, they look at a model

where the state of world (i.e. the marginal return of effort) is common to all agents but

only partially known by them. They demonstrate that there exists a unique Bayesian-

Nash equilibrium and give a complete characterization of equilibrium efforts as a function of

weighted Katz-Bonacich centralities.

In the present paper, we study a policy analyzed by Ballester et al. (2006, 2010), the

so-called key-player policy, in the context of incomplete information. The aim of this policy

consists in finding and getting rid of the key player, i.e., the agent who, once removed, leads

to the highest reduction in aggregate activity.2 If the planner has incomplete information

about the marginal return of effort, then we show that the key player may be different to

the one proposed in the perfect information case. This difference is determined by a ratio

that captures all the (imperfect) information that the agents have, including the priors of

the agents and the planner and the posteriors of the agents.

1For overviews on the network literature, see Jackson (2008), Ioannides (2012) and Jackson and Zenou

(2015).
2For a recent overview on the literature on key players, see Zenou (2016).

2



2 Complete information

2.1 The model

The network Let I := {1     } denote the set of players, where   1, connected by

a network g. We keep track of social connections in this network by its symmetric adjacency

matrix G = [], where  =  = 1 if  and  are linked to each other, and  = 0,

otherwise. We also set  = 0.

Payoffs In the perfect information case, each agent takes action  ∈ [0+∞) that
maximizes the following quadratic utility function:

 ( −;G) =  − 1
2
2 + 

X
=1

 (1)

where   0 is themarginal return of effort and   0 is the strength of strategic interactions.

2.2 Key players

Consider the utility function defined by (1). Denote by (G) the largest eigenvalue of

G. Ballester et al. (2006) show that, at the Nash equilibrium, if   1(G), then

each individual  will provide effort ∗ =   (G), where  (G) is the Katz-Bonacich

centrality of individual  and defined, in vector form, as b = (I−G)−1 1, where I is the
×  identity matrix and 1 is the −vector of 1. Denote by

∗(G) =
X
=1

∗ = 

X
=1

 (G)

the total sum of efforts at the Nash equilibrium. The planner’s objective is to generate the

highest possible reduction in aggregate effort level by picking the appropriate individual.

Formally, the planner’s problem is the following:

max
∈{1}

{∗(G)− ∗(G−)}

where G− is the (− 1)× (− 1) adjacency matrix corresponding to the network g− when
individual  has been removed. From Ballester et al. (2006, 2010), we now define a new

network centrality measure, called the intercentrality of agent , and denoted by  (G)

that will solve this program. We have the following result:
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Proposition 1 (Ballester et al. (2006)) Assume   1(G). Then, under com-

plete information, the key player in network g is the agent  that has the highest intercentral-

ity measure (G), which is defined as:

(G) :=
[(G)]

2

(G)
(2)

where (G) is the cell corresponding to the th row and the th column of the matrix

(I−G)−1 and thus keeps track of the paths that start and finish at  (cycles).

This proposition says that the key player ∗ who solves max∈{1}{∗(G) − ∗(G−)}
is the agent who has the highest inter-centrality (G) in g, that is, for all  = 1  ,

∗(G) ≥ (G). As a result,

∗(G) ∈ max
∈{1}

{∗(G)− ∗(G−)} (3)

3 Incomplete information: Key-player policies

We would like now to derive the key-player policy where there is incomplete information.

To be more precise, assume that the marginal return of effort  in the payoff function (1) is

common to all agents but only partially known by the agents. Agents know, however, the

exact value of the synergy parameter .

3.1 Bayesian-Nash Equilibrium

We assume that there are two states of the world, so that the parameter  can only take two

values:   . All individuals share a common prior:

P ({ = }) =  ∈ (0 1) (4)

Each individual  receives a private signal,  ∈ { }, such that

P ({ = } | { = }) = P ({ = } | { = }) =  ≥ 12

where { = } and { = } denote, respectively, the event that agent  has received a signal
 and . Assume that there is no communication between the players and that the network

does not affect the possible channels of communication between them. Agent  has to choose
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an action  () ≥ 0 for each signal  ∈ { }. The expected utility of agent  can be written
as:

E [|] = E [|] ()− 1
2
[ ()]

2
+  ()

X
=1

E [|]

We have:

b := E [| { = }] =  (1− )

 (1− ) + (1− ) 
 +

(1− ) 

 (1− ) + (1− ) 
 (5)

b := E [| { = }] = (1− ) (1− )

(1− ) (1− ) + 
 +



(1− ) (1− ) + 
 (6)

 = P ({ = } | { = }) = (1− ) 2 +  (1− )
2

 (1− ) + (1− ) 
(7)

 = P ({ = } | { = }) = (1− ) (1− )
2
+ 2

+ (1− ) (1− )
(8)

De Marti and Zenou (2016) have shown the following result:

Proposition 2 (De Marti and Zenou (2016)) Consider the network game with payoffs

(1) and unknown parameter  that can only take two values: 0    . Then, if

  1max (G), there exists a unique interior Bayesian-Nash equilibrium in pure strategies

given by

x∗= bb (G)− (1− )

(2−  − )
(b − b)b (( +  − 1)G) (9)

x∗= bb (G) + (1− )

(2−  − )
(b − b)b (( +  − 1)G) (10)

where b ≡ (1− ) b + (1− ) b

(2−  − )
 (11)

 and  are given by (7), and (8) and b and b by (5) and (6).

This proposition shows under which condition there exist a unique Bayesian-Nash equi-

librium and characterize it and a combination of Katz-Bonacich centralities.
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3.2 Key-player policy

Let us now study the key-player policy in this model where the unknown parameter is 

and there are two states of the world,  and .
3 We assume that the planner has a prior

(which is unknown to the agents) for the event { = }, which is given by:
P({ = }) =  ∈ (0 1)

The prior of the planner may be different than the one shared by the agents, which is given

by (4) because the planner may have superior information. The planner needs to solve the

key player problem, which is the difference in aggregate activity according to her prior, i.e.

max∈{1}∆, where

∆ =
£
∗(G) + (1− )∗(G)

¤| {z }
Total activity before the removal of 

− £∗(G−) + (1− )∗(G−)
¤| {z }

Total activity after the removal of 

where ∗(G) =
P

=1 
∗
 , 

∗(G−) =
P

=1 6= 
∗
 , 

∗(G) =
P

=1 
∗
 and 

∗(G−) =
P

=1 6= 
∗
 ,

and where ∗ is the Bayesian-Nash equilibrium high action of agent  defined by (10) while

∗ is the Bayesian-Nash equilibrium low action of agent  defined by (9). Indeed, if the

planner believes that the state of the world is , which occurs with probability 
, then she

believes that all agents will play the high actions while, if it is , then she thinks that the

low actions will be played.

Using the values defined in (10) and (9), we obtain:

∆ = b" X
=1

 (G)−
−1X
=1


¡
G−¢#

+

"
X

=1

 (( +  − 1)G)−
−1X
=1


¡
( +  − 1)G−

¢#
where

 := (b − b)

∙


(1− )

(2−  − )
− (1− )

(1− )

(2−  − )

¸
(12)

and b is defined in (11),  and  are given by (7) and (8), and b and b by (5) and (6).

Using the definition of intercentrality given in (3), this is equivalent to

∆ = b  (G) +   (( +  − 1)G)
We have the following proposition:

3The generalization to a finite number of states of the world is relatively straightforward. Also, solving

the key-player problem when the synergy parameter  is unknown (instead of ) leads to similar results.

Both results are available upon request
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Proposition 3 Assume   1(G). Then, under incomplete information on  and

with two states of the world, the key player is given by:

arg max
∈{1}

{∆ (GΓ) ≡ b  (G) +   (( +  − 1)G)}

If  = 0, then, when b − b → 0, which means that both levels of s (i.e. state of

the world) are very similar, the optimal targeting is equivalent to the complete information

case. If  6= 0, then the optimal targeting may change. This is because the ranking derived
from the intercentrality measure is not stable over . Let us show with a simple example

that, indeed, the key player may change between the complete information and incomplete

information case.

3.3 Example

Consider the bridge network g in Figure 1 with eleven agents due to Ballester et al. (2006):
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Figure 1: Bridge network

We distinguish three different types of equivalent actors in this network, which are of

type 1 (player 1), type 2 (players 2, 6, 7, and 11) and type 3 (players 3, 4, 5, 8, 9, and 10).

For the case of perfect information, Table 1 computes, for agents of types 1, 2 and 3 the

value of the Katz-Bonacich centrality measures (G
) (which is equal to the effort ∗

when  = 1) and the intercentrality measures (G
) for different values of . In each

column, a variable with a star identifies the highest value.

Type (0096G
) (0096G

) (02G
) (02G

)

1 1679 2726 7143 35714∗

2 1793∗ 3016∗ 7381∗ 28601

3 1646 2570 6191 21949
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Table 1: Katz-Bonacich versus intercentrality measures in a bridge network

Therefore, under complete information, the most active criminal (i.e. the one with the

highest Katz-Bonacich centrality) is player 2 but the key player varies depending on the

discount factor . When  is small (equal to 0096), then the key player is also the most

active criminal. When  is larger (equal to 02), then the key player is not the most active

criminal since it is player 1.

Let us now calculate the key player for the bridge network g with eleven agents displayed

in Figure 1 when there is incomplete information on . The key player is the agent  that

maximizes

∆

¡
GΓ

¢ ≡ b (02;G) +  (0096;G)

Using Table 1, we obtain:

Type (0096G
) (0096G

) (02G
) (02G

) b(02) + (0096)

1 1679 2726 7143 35714∗ 35714 b+ 2726 
2 1793∗ 3016∗ 7381∗ 28601 28601 b+ 3016 
3 1646 2570 6191 21949 21949 b+ 257 
Table 2: Intercentrality measures in a bridge network with imperfect information

Hence, the key player depends on the ratio b, which is given by:
b = (b − b)

£
 (1− )− (1− ) (1− )

¤
(1− ) b + (1− ) b

where  and  are given by (7) and (8), b and b by (5) and (6), and b by (11). This
ratio captures all the (incomplete) information that the agents have: the priors  and  of

the agents and the planner and the posteriors  and  of the agents. If the ratio b is
small, type−1 agents are more likely to be the key players as in the perfect information case.
However, if b is high, then type−2 agents will be the key players, which give the opposite
prediction compared to the perfect information case. It readily verified that b increases
with , , and b and decreases with  and b. To understand this result, two effects

need to be considered: () there is a common effect when || is large (e.g. high variance ofb); () there is an idiosyncratic effect when +−1¿ 1 and then the change in ranking

is more likely to occur.
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To illustrate this result, assume, for example, that  = 02 and  = 08, so thatb = 0326, b = 0737 and b = 056. Also assume that  = 06 and  = 085, so that

 = 0703 and  = 0776. Finally, assume  = 08   = 06. Then using (12), we

have:  = 00945, which means that b = 0169. It is easily verified that, when  is

(partially) unknown, the key player is individual 1 since she is the one who has the highestb(02) + (0096), while, when there is perfect information on , the key player is

individual 2 if  is low enough (for example, if  = 0096; see Table 2) and individual 1 if

 is high enough (for example, if  = 02; see Table 2). If we now change the parameters

of the model so that b becomes larger (by assuming higher values of , , and b and

lower values of  and b), then the key player in the imperfect information case becomes

individual 2.

4 Conclusion

In this paper, we show that incomplete information can distort the network policy im-

plications with respect to the complete information benchmark. Indeed, the targeting of

individuals in a network (key-player policy) may be very different when information of the

payoff structure is partially known. This implies that the planner may target the “wrong”

individual.

We believe that, in many situations, information is incomplete and thus our model can

shed light on these issues. For example, in criminal networks (Ballester et al., 2010; Calvó-

Armengol and Zenou, 2004; Liu et al., 2013), delinquents do not always know the proceeds

from crime. In R&D networks (Goyal and Moraga-Gonzalez, 2001; König et al., 2014),

the marginal reduction in production costs due to R&D collaboration is partially known.

In education (Calvó-Armengol et al., 2009), all students know each other connections in

the classroom, i.e. the network structure, but they may not be completely aware of what

are the benefits of studying. As a result, targeting the “right” key player important when

information is incomplete. This is particularly relevant for crime (Liu et al., 2012; Lindquist

and Zenou, 2014) but also for financial networks (Denbee et al., 2014), R&D networks (König

et al., 2014) and training policies (Lindquist et al., 2015).
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